同构、同态与商群
前言
实践中存在着很多不同的代数系统,有些系统是同类型的,有些不但是同类型的,而且具有共同的运算性质,因此是同种的。
本章着重介绍了群关系的映射和群的分解
一、证明 9.3
解:
∵
\because
∵
H
1
H_1
H1 和
H
2
H_2
H2 是群 G 的正规子群
∴
\therefore
∴ 则群
H
1
H_1
H1
H
2
H_2
H2 显然满足封闭性
又因为
H
1
H_1
H1 和
H
2
H_2
H2 中均存在单位元 e
所以群
H
1
H_1
H1
H
2
H_2
H2 中必存在单位元 e
由命题 6.10 知,
有限群 G 的非空子集
H
1
H_1
H1
H
2
H_2
H2 是群 G 的子群,当且仅当
H
1
H_1
H1
H
2
H_2
H2 中的元素在群 G 的操作下满足
∴
\therefore
∴ 群
H
1
H_1
H1
H
2
H_2
H2 也是群 G 的子群
且对
∀
\forall
∀ g
∈
\in
∈ G,有
g
H
1
gH_1
gH1 =
H
1
g
H_1g
H1g 和
g
H
2
gH_2
gH2 =
H
2
g
H_2g
H2g
即对任意给定的 g ∈ \in ∈ G 和 h 1 h_1 h1 ∈ \in ∈ H 1 H_1 H1,存在 h 1 ′ h_1^{'} h1′ ∈ \in ∈ H ! H_! H!,使得 g h 1 h_1 h1 = h 1 ′ h_1^{'} h1′g
同理,对任意给定的 g ∈ \in ∈ G 和 h 2 h_2 h2 ∈ \in ∈ H 2 H_2 H2,存在 h 2 ′ h_2^{'} h2′ ∈ \in ∈ H ! H_! H!,使得 g h 2 h_2 h2 = h 2 ′ h_2^{'} h2′g
∴ \therefore ∴ g h 1 h_1 h1 h 2 h_2 h2 = h 1 ′ h_1^{'} h1′g h 2 h_2 h2 = h 1 ′ h_1^{'} h1′ h 2 ′ h_2^{'} h2′g
∵ \because ∵ h 1 h_1 h1 h 2 h_2 h2, h 1 ′ h_1^{'} h1′ h 2 ′ h_2^{'} h2′ ∈ \in ∈ H 1 H_1 H1 H 2 H_2 H2
∴ \therefore ∴ g g g ( H 1 H_1 H1 H 2 H_2 H2) = ( H 1 H_1 H1 H 2 H_2 H2) g g g
∴
\therefore
∴
H
1
H_1
H1
H
2
H_2
H2 也是群 G 的正规子群
二、证明 9.5
解:
(1)充分性:
∵
\because
∵
ϕ
\phi
ϕ 是一种群同态
∴
\therefore
∴ 对于
∀
\forall
∀ a,b
∈
\in
∈ G,有
ϕ
\phi
ϕ (a•b) =
ϕ
\phi
ϕ (a) ○
ϕ
\phi
ϕ (b) =
ϕ
\phi
ϕ (b•a)
∴
\therefore
∴ a•b = b•a
∴
\therefore
∴ G 是阿贝尔群
(2)必要性:
∵
\because
∵ G 是阿贝尔群
∴
\therefore
∴ 对于
∀
\forall
∀ a,b
∈
\in
∈ G,有 a•b = b•a
∴
\therefore
∴
ϕ
\phi
ϕ (a•b) =
(
a
•
b
)
2
(a•b)^2
(a•b)2 = a•b•a•b =
a
2
a^2
a2 •
b
2
b^2
b2 =
ϕ
\phi
ϕ (a) ○
ϕ
\phi
ϕ (b)
∴
\therefore
∴
ϕ
\phi
ϕ 是一种群同态
综上所述,
ϕ
\phi
ϕ 是一种群同态当且仅当 G 是阿贝尔群
三、证明 9.7
解:由题,
[
[
[
G
\mathbb{G}
G :
H
\mathbb{H}
H
]
]
] =
2
2
2
(1) 若
g
g
g
∈
H
\in H
∈H,则
g
H
gH
gH =
H
H
H =
H
g
Hg
Hg
(2) 若
g
g
g
∈
H
′
\in H^{'}
∈H′ (
H
′
H^{'}
H′=
G
−
H
G-H
G−H)
若 g H gH gH ≠ \neq = H H H , H g Hg Hg ≠ \neq = H H H
有 g H gH gH = H ′ H^{'} H′ = H g Hg Hg
四、证明 9.9
解:设
G
\mathbb{G}
G 是由 g 生成的循环群
令
H
\mathbb{H}
H
≤
\leq
≤
G
\mathbb{G}
G
我们要证明商群
G
\mathbb{G}
G
/
/
/
H
\mathbb{H}
H中的任意元素都可表示为
(
g
H
)
k
(gH)^k
(gH)k ,其中
k
k
k
∈
\in
∈
Z
\mathbb{Z}
Z
设 x x x H \mathbb{H} H ∈ \in ∈ G \mathbb{G} G / / / H \mathbb{H} H
∵ \because ∵ G \mathbb{G} G 是由 g 生成的循环群
∴ \therefore ∴ x = g k g^k gk, k k k ∈ \in ∈ Z \mathbb{Z} Z
∴ \therefore ∴ ( g H ) k (gH)^k (gH)k = ( g k g^k gk) H \mathbb{H} H = x x x H \mathbb{H} H
∴ \therefore ∴ g H gH gH 产生 G \mathbb{G} G / / / H \mathbb{H} H
∴ \therefore ∴ 商群 G \mathbb{G} G / / / H \mathbb{H} H 也是循环群