[RS] K-L主成分变换

版权声明:本文为博主原创文章,若有错误之处望大家批评指正!转载需附上原文链接,谢谢! https://blog.csdn.net/summer_dew/article/details/79841944

原理简述

K-L变换,是离散Karhunen-Loeve变换的简称,它是对某一多光谱图像利用K-L变换矩阵A进行正交线性变换,而产生一组新的多光谱图像Y(光谱空间)。

表达式:Y=AX
A是X协方差矩阵C的特征向量矩阵的转置矩阵

  • 变换前后的方差总和不变,变换只是把原来的方差按权值再分配到新的主成分图像中

  • 第一主成分包含了总方差的绝大部分(一般在80%以上),其余各主成分的方差依次减小

  • 变换后各主成分之间的相关系数为0,也就是说各主成分间的内容是不同的,是“垂直”的

  • 第一主成分相当于原来各波段的加权和,而且每个波段的加权值与该波段的方差大小成正比(方差大说明信息量大)。其余各主成分相当于不同波段组合的加权差值图像

这里写图片描述

意义

  • 多光谱图像的各波段之间是经常高度相关的,表现为:

    1. 物体的波谱反射相关性
    2. 同物异谱现象的存在
    3. 遥感传感器波段之间的重叠

    K-L变换可以很好地除它们之间的相关性,同时还压缩了数据。

  • K-L变换的重点内容在于根据特征矩阵对各成分进行分析,以确定其物理意义

  • K-L也是遥感数据融合的主要方法之一

实际应用

  • K-L变换的第一主成分还降低了噪声,有利于细部特征的增强和分析,适用于进行高通滤波,线性特征增强和提取以及密度分割等处理

  • K-L变换是一种数据压缩和去相关技术,第一成分虽然信息量大,但有时对于特定的专题信息,第四,五,六等主成分也有重要的意义

  • 在图像中,可以以局部地区或者选择训练区的统计特征作整个图像的K-L变换,则所选部分图像的地物类型就会更突出

  • 可以将所有波段分组进行K-L变换,再选主成分进行假彩色合成其他处理

  • K-L变换再集合意义上相当于空间坐标旋转了一个角度,第一主成分所在的坐标轴一定指向光谱空间中数据散步最大的方向;第二主成分则取第一主成分正交且数据散布次大的方向,其余依次类推。可实现数据压缩和图像增强

展开阅读全文

没有更多推荐了,返回首页