OpenCV的resize方法4种插值方法效果对比器

本文详细介绍了OpenCV库中的resize方法,以及其支持的四种插值算法(最近邻、双线性、双三次和区域像素混合),并通过示例代码展示了它们在图像缩放过程中的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

resize方法

OpenCV中的resize方法是一种用于调整图像尺寸的函数。它可以将图像缩放到指定的尺寸,或者按比例放大或缩小图像。

dst = cv2.resize(src, dsize, fx=None, fy=None,
interpolation=cv2.INTER_LINEAR)

参数说明:

  • src:输入的原始图像。
  • dsize:输出图像的目标尺寸,是一个包含宽度和高度的元组(width, height)。当dsize不为零时,它表示输出图像的确切尺寸。
  • fx:沿水平轴的缩放因子。默认为None,表示不进行水平缩放。如果dsize为零,则可以通过fx和fy来指定缩放因子。
  • fy:沿垂直轴的缩放因子。默认为None,表示不进行垂直缩放。
  • interpolation:插值方法,用于指定如何在原始图像和目标图像之间进行插值。

插值方法介绍

最近邻插值(cv2.INTER_NEAREST):

  • 该方法是从输入图像中最接近目标像素的位置获取像素值。
  • 优点:计算速度快。
  • 缺点:在放大图像时可能会导致图像出现像素化的效果,质量较差。

双线性插值(cv2.INTER_LINEAR):

  • 该方法通过对周围像素进行加权平均来计算目标像素的值。
  • 优点:速度较快,质量较好,可以有效减少图像的锯齿和模糊。
  • 缺点:可能导致一些细节丢失。

双三次插值(cv2.INTER_CUBIC):

  • 该方法使用周围4x4像素的立方函数来计算目标像素的值。
  • 优点:速度适中,质量较好。
  • 缺点:相比双线性插值计算更复杂。

区域像素混合插值(cv2.INTER_AREA)

  • 该方法通过考虑目标像素周围的像素值来计算目标像素的值。
  • 优点:在图像抽取(decimation)时能提供较好的效果。
  • 缺点:在放大图像时,效果可能类似于最近邻插值法。

效果

在这里插入图片描述

代码

import sys
from PyQt5.QtWidgets import QApplication, QMainWindow, QFileDialog, QLabel, QGridLayout, QHBoxLayout, QVBoxLayout, \
    QWidget, QPushButton
from PyQt5.QtGui import QPixmap, QImage
from PyQt5.QtCore import Qt
import cv2


class ImageResizeWindow(QMainWindow):
    def __init__(self):
        super().__init__()
        self.initUI()

    def initUI(self):
        self.setWindowTitle('Image Resize with Interpolation')
        self.setGeometry(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

立秋6789

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值