数据结构实验:连通分量个数
Problem Description
在无向图中,如果从顶点vi到顶点vj有路径,则称vi和vj连通。如果图中任意两个顶点之间都连通,则称该图为连通图,
否则,称该图为非连通图,则其中的极大连通子图称为连通分量,这里所谓的极大是指子图中包含的顶点个数极大。
例如:一个无向图有5个顶点,1-3-5是连通的,2是连通的,4是连通的,则这个无向图有3个连通分量。
Input
第一行是一个整数T,表示有T组测试样例(0 < T <= 50)。每个测试样例开始一行包括两个整数N,M,(0 < N <= 20,0 <= M <= 200)
分别代表N个顶点,和M条边。下面的M行,每行有两个整数u,v,顶点u和顶点v相连。
Output
每行一个整数,连通分量个数。
Sample Input
2
3 1
1 2
3 2
3 2
1 2
Sample Output
2
1
#include <stdio.h>
#include <stdlib.h>
int f[222];
int find(int x)
{
if(x!=f[x])
{
f[x]=find(f[x]);
}
return f[x];
}
void join(int x,int y)
{
x=find(x);
y=find(y);
if(x!=y)
{
f[y]=x;
}
}
int main()
{
int i,t,n,m,u,v,c;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)
f[i]=i;
for(i=0;i<m;i++)
{
scanf("%d%d",&u,&v);
join(u,v);
}
c=0;
for(i=1;i<=n;i++)
{
if(f[i]==i)
c++;
}
printf("%d\n",c);
}
return 0;
}