遥感应用分析原理与方法(一)

本文探讨遥感影像的空间分辨率、光谱分辨率和辐射分辨率,指出空间分辨率并不直接决定识别能力。同时,介绍了遥感影像的几何特征、波段选择与冗余、测量复杂度与识别准确度的关系,以及遥感数据的四个关键特征。此外,提到了遥感的不同类型和应用,如光学与微波遥感,以及不同遥感系统的特性。
摘要由CSDN通过智能技术生成
 

 空间分辨率三种表示:像元、线对数、瞬间视场(IFOV)。

一般来说,空间分辨率越高,识别物体的能力就越强。但是,空间分辨率的大小仅仅表明影像细节的可见程度,识别能力不全取决于空间分辨率。所以空间分辨率越高,识别能力越强的说法是欠妥的!

 

遥感影像的几何特征是指遥感影像与其表示的地表景观之间的几何关系(中心投影,正射投影,几何畸变)。

 

光谱分辨率指遥感器选用的波段数量各波段波长范围波长间隔大小 。与遥感器的通道数、通道的中心波长、通道的带宽相对应。

在光谱分辨率的概念中,认为波段越多越好是不正确的。波段数据之间是有一定相关性的,若波段越多,冗余会越多。

测量复杂度:对应于遥感器记录的亮度级数m的k次方(k即为波段数)。只是对应!

测量复杂度提高到一定程度后,测量精度几乎饱和、没有变化。(饱和效应

当训练样本有限是,测量复杂度有一个值使得平均识别准确度最大,此值即为最佳测量复杂度

 

辐射分辨率和空间分辨率是难以两全的(?)

辐射分辨率是指接收光谱信号是能分辨的最小辐射度差。

 

遥感数据的特征就是空间分辨率、光谱分辨率、时间分辨率、辐射分辨率这四个。

遥感系统的信息量与这四种分辨率都有关。

Is&

遥感应用分析是指利用遥感技术获取的遥感数据,通过分析、处理和解释,研究地球表面的空间特征和变化规律,以实现以遥感数据为基础的地学研究和应用。其原理方法主要包括以下几个方面: 1. 遥感数据获取:通过航空、航天等平台获取地球表面的遥感数据,例如航空摄影、卫星遥感影像等。遥感数据可以提供丰富的地表信息,如地形地貌、植被类型、水文状况等。 2. 遥感数据预处理:由于遥感数据受大气、地面、传感器等因素影响,需要进行预处理来提高数据的质量。包括大气校正、几何校正、辐射校正等处理方法,以消除数据的噪声和歪曲。 3. 遥感影像分类:通过遥感影像分类,将像元分为不同的类别,如水体、植被、建筑等。常用的分类方法包括基于像元的分类、基于对象的分类等。分类结果可以用来研究地表覆盖情况、土地利用变化等。 4. 遥感影像变化检测:通过比较多时相的遥感影像,检测地表变化。常用的变化检测方法包括像素级变化检测、物体级变化检测等。变化检测可以用来分析城市扩张、森林退化等环境变化情况。 5. 遥感数据与地学模型结合:将遥感数据与地学模型结合,可以进行地学参数反演和模拟。例如利用遥感数据估算土壤湿度、植被生物量等,或者通过遥感数据模拟气候变化等。 通过遥感应用分析,可以获取大范围、高分辨率的地表信息,用来研究自然资源管理、环境评估、灾害监测等地学领域相关问题。同时,随着遥感技术的不断发展和数据源的增加,遥感应用分析方法原理也在不断更新和完善。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值