原文 | https://mp.weixin.qq.com/s/zdQttJfuubyztiVplScbwA
对称矩阵
对称矩阵是最重要的矩阵之一,对于对称矩阵来说,A=AT。矩阵的特殊性也表现在特征值和特征向量上,比如马尔可夫矩阵的有一个值为1的特征值,对称矩阵的特征值又有哪些特性呢?
本文的相关知识:
正交向量和正交矩阵 (线性代数20——格拉姆-施密特正交化)
投影矩阵 (线性代数18——投影矩阵和最小二乘)
复数 (闲话复数(1))
谱定理
对于实对称矩阵来说,它的特征值也为实数,并且能够挑选出完全正交的特征向量。
单位矩阵是对称矩阵,它的特征值都是1,并且单位矩阵的每一个列向量都是特征向量,它们完全正交,因此单位矩阵肯定符合实对称矩阵特征值和特征向量的性质。
P是投影矩阵也是单位矩阵,x是一个二维向量,如果x在平面的投影是x本身,即Px=x,那么平面内的所有向量都是P的特征向量。更一般的情况是,在重特征值的情况下,可能一个平面内的所有向量都能作为特征向量,因此我们说实对称矩阵“能够挑选出完全正交的特征向量”,下面是一个例子:
A的特征值全部是λ=a,对于任何向量都有Ax=λx,因此任何向量都是特征向量,但这些特征向量并不都是正交的,所以是从中选出一套正交向量。
如果A有n个线性无关的特征向量,那么A可以对角化为A=S∧S-1,如果A是对称矩阵,那么A对角化后有更好的性质:
Q是A的特征向量矩阵,同时也是正交矩阵,列向量是标准正交基。对于一个列向量标准正交的矩阵来说&