26.对称矩阵及正定性

1. 对称矩阵

1. 1 对称矩阵的性质

首先对称矩阵是方阵,满足如下条件

  • 元素关于主轴对称
    a i j = a j i ; A = A T \begin{equation} a_{ij}=a_{ji};A=A^T \end{equation} aij=aji;A=AT
  • 对称矩阵A的特征值为实数,通常叫实对称矩阵;
  • 特征向量相互正交。

1.2 证明特征值为实数

我们定义矩阵A的特征值为 λ = a + b i \lambda=a+bi λ=a+bi,特征向量x,其对特征值 λ ˉ = a − b i \bar{\lambda}=a-bi λˉ=abi,其对应向量 x ˉ \bar{x} xˉ,因为A为实对称矩阵,所以 A = A ˉ A=\bar{A} A=Aˉ
A x = λ x ; A ˉ x ˉ = A x ˉ = λ ˉ x ˉ ; \begin{equation} Ax=\lambda x;\bar{A}\bar{x}=A\bar{x}=\bar{\lambda} \bar{x}; \end{equation} Ax=λx;Aˉxˉ=Axˉ=λˉxˉ;

  • A x ˉ = λ ˉ x ˉ A\bar{x}=\bar{\lambda} \bar{x} Axˉ=λˉxˉ转置:
    ( A x ˉ ) T = ( λ ˉ x ˉ ) T ; x ˉ T A T = x ˉ T λ ˉ T ; A = A T \begin{equation} (A\bar{x})^T=(\bar{\lambda} \bar{x})^T;\bar{x}^TA^T=\bar{x}^T\bar{\lambda}^T;A=A^T \end{equation} (Axˉ)T=(λˉxˉ)T;xˉTAT=xˉTλˉT;A=AT
    x ˉ T A = x ˉ T λ ˉ T = x ˉ T λ ˉ T ; x ˉ T A x = λ ˉ x ˉ T x ; \begin{equation} \bar{x}^TA=\bar{x}^T\bar{\lambda}^T=\bar{x}^T\bar{\lambda}^T;\bar{x}^TAx=\bar{\lambda}\bar{x}^Tx; \end{equation} xˉTA=xˉTλˉT=xˉTλˉT;xˉTAx=λˉxˉTx;
    A x = λ x ; ⇒ x ˉ T A x = λ x ˉ T x \begin{equation} Ax=\lambda x;\Rightarrow \bar{x}^TAx=\lambda \bar{x}^Tx \end{equation} Ax=λx;xˉTAx=λxˉTx
  • 以上两个公式可得:
    x ˉ T A x = λ x ˉ T x ; x ˉ T A x = λ ˉ x ˉ T x ; ⇒ λ = λ ˉ \begin{equation} \bar{x}^TAx=\lambda \bar{x}^Tx;\bar{x}^TAx=\bar{\lambda}\bar{x}^Tx; \Rightarrow \lambda=\bar{\lambda} \end{equation} xˉTAx=λxˉTx;xˉTAx=λˉxˉTx;λ=λˉ
  • 整理可得:
    a + b i = a − b i ⇒ b = 0 ⇒ λ = λ ˉ = a \begin{equation} a+bi=a-bi \Rightarrow b=0\Rightarrow \lambda=\bar{\lambda}=a \end{equation} a+bi=abib=0λ=λˉ=a
  • 结论:!!!实对称矩阵A的特征值为实数!!!!

2. 矩阵分解

一般情况下,我们对矩阵A可以进行特征值和特征向量分解,形式如下:
A = S Λ S − 1 \begin{equation} A=S\Lambda S^{-1} \end{equation} A=SΛS1

  • 因为我们的矩阵A为对称矩阵,单位正交特征向量矩阵 Q T = Q = Q − 1 Q^T=Q=Q^{-1} QT=Q=Q1,那么整体代入可得:
    A = Q Λ Q T \begin{equation} A=Q\Lambda Q^T \end{equation} A=QΛQT
  • 什么是一个好的矩阵?
    好的矩阵是特征值 λ \lambda λ 为实数,特征向量 x i , x j x_i,x_j xi,xj相互正交。而实对称矩阵A满足以上两个条件。
  • 实对称矩阵A, A = A T A=A^T A=AT矩阵分解如下:
    A = Q Λ Q T = [ q 1 q 2 ⋯ q n ] [ λ 1 λ 2 ⋱ λ n ] [ q 1 T q 2 T ⋮ q n T ] = λ 1 q 1 q 1 T + λ 2 q 2 q 2 T + ⋯ + λ n q n q n T \begin{equation} A=Q\Lambda Q^T=\begin{bmatrix}q_1&q_2&\cdots&q_n\end{bmatrix}\begin{bmatrix}\lambda_1\\\\&\lambda_2&\\\\&&\ddots&\\\\&&&\lambda_n\end{bmatrix}\begin{bmatrix}q_1^T\\\\q_2^T\\\\\vdots\\\\q_n^T\end{bmatrix}=\lambda_1q_1q_1^T+\lambda_2q_2q_2^T+\cdots+\lambda_nq_nq_n^T \end{equation} A=QΛQT=[q1q2qn] λ1λ2λn q1Tq2TqnT =λ1q1q1T+λ2q2q2T++λnqnqnT
  • 重点!!!,我们将每个 q i q i T q_iq^T_i qiqiT挑出来:,我们知道 ∣ q i ∣ = 1 |q_i|=1 qi=1
    P = q i q i T 1 2 = q i q i T q i T q i ; 每一个小分量居然是投影矩阵!!!果然是叫谱分解定理!!! \begin{equation} P=\frac{q_iq^T_i}{1^2}=\frac{q_iq^T_i}{q_i^Tq_i};每一个小分量居然是投影矩阵!!!果然是叫谱分解定理!!! \end{equation} P=12qiqiT=qiTqiqiqiT;每一个小分量居然是投影矩阵!!!果然是叫谱分解定理!!!
    可以将矩阵A想象成一束光,每一个 q i q i T q_iq^T_i qiqiT就相当于每个单色的成分的光,而 λ i \lambda_i λi 就相当于这个单色光所对应的比例,通过将 n种光进行不同比例的叠加,最后合成矩阵A。
  • 每一个对称矩阵A都是由一些互相垂直的投影矩阵组合而成。我们可以将矩阵A想象成一幅画,每个投影矩阵 q i T q i q_i^Tq_i qiTqi 相当于一个图层平面,我们通过不同的图层叠加后形成一幅多彩的画,真神奇!!!

3. 微分方程的稳态

我们知道在解微分方程的时候,发现矩阵A的特征值小于等于零的时候,整个系统趋近于稳态,所以对于实对称矩阵A来说,我们希望知道矩阵A的特征值是多少,以便能更快的判断出整个系统是否会达到稳定,或者系统发散。但是当我们的矩阵A为50X50的时候,我们按照解特征值方程的方法:
∣ A − λ I ∣ = 0 ⇒ ( λ 1 − k 1 ) ( λ 2 − k 2 ) ⋯ ( λ 50 − k 50 ) \begin{equation} |A-\lambda I|=0\Rightarrow (\lambda_1-k_1)(\lambda_2-k_2)\cdots(\lambda_{50}-k_{50}) \end{equation} AλI=0(λ1k1)(λ2k2)(λ50k50)
发现居然需要分解一个50次方的方程,也许一辈子都无法解决,想我们明明只是为了看看特征值符号的正负,所以我们通过特征值的正符号个数和矩阵A的主元正符号一致来间接的判断特征值为正数的个数。

3.1 正定对称矩阵

正定对称矩阵能保证特征值为正实数,所有的主元都是正数。我们有如下思路:

  • 矩阵特征值为正数的个数=矩阵主元为正数的个数=矩阵的顺序主子式为整数的个数
    顺序主子式表示如下:
    ∣ a 11 ∣ , ∣ a 11 a 12 a 21 a 22 ∣ , ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \begin{equation} \begin{vmatrix} a_{11} \end{vmatrix},\begin{vmatrix} a_{11}&a_{12}\\\\ a_{21}&a_{22} \end{vmatrix},\begin{vmatrix} a_{11}&a_{12}&a_{13}\\\\ a_{21}&a_{22}&a_{23}\\\\ a_{31}&a_{32}&a_{33} \end{vmatrix} \end{equation} a11 , a11a21a12a22 , a11a21a31a12a22a32a13a23a33
    这样我们就能通过实对称矩阵A的顺序主子式正数的个数来判断矩阵特征值为正数的个数
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值