线性代数学习笔记——二次型与二次曲面

二次型

二次型及其矩阵表示
  • 含有 n n n个变量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn的实二次齐次多项式
    f ( x 1 , x 2 , ⋯   , x n ) = a 11 x 1 2 + 2 a 12 x 1 x 2 + ⋯ + 2 a 1 n x 1 x n + a 22 x 2 2 + 2 a 23 x 2 x 3 + ⋯ + 2 a 2 n x 2 x n + ⋯ + a n n x n 2 f(x_1,x_2,\cdots,x_n)=a_{11}x_1^2+2a_{12}x_1x_2+\cdots+2a_{1n}x_1x_n +a_{22}x_2^2+2a_{23}x_2x_3+\cdots+2a_{2n}x_2x_n+\cdots+a_{nn}x_n^2 f(x1,x2,,xn)=a11x12+2a12x1x2++2a1nx1xn+a22x22+2a23x2x3++2a2nx2xn++annxn2称为一个n元二次型
  • 二次型与实对称矩阵是一一对应的:
    A = ( a 11 a 12 ⋯ a 1 n a 12 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a 1 n a 2 n ⋯ a n n ) , x = ( x 1 x 2 ⋮ x n ) , A= \left( \begin{matrix} a_{11} &a_{12} &\cdots &a_{1n}\\ a_{12} &a_{22} &\cdots &a_{2n}\\ \vdots &\vdots & &\vdots\\ a_{1n} &a_{2n} &\cdots &a_{nn} \end{matrix} \right), x= \left( \begin{matrix} x_1\\ x_2\\ \vdots\\ x_n \end{matrix} \right), A=a11a12a1na12a22a2na1na2nann,x=x1x2xn,可以把二次型写成
    f ( x 1 , x 2 , ⋯   , x n ) = x T A x f(x_1,x_2,\cdots,x_n)=x^TAx f(x1,x2,,xn)=xTAx这里的 A A A是一个实对称矩阵,称为二次型 f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn)的矩阵
  • 只含平方项,不含交叉项的二次型称为标准形式的二次型,简称标准形
  • 显然二次型 f ( x 1 , x 2 , ⋯   , x n ) = x T A x f(x_1,x_2,\cdots,x_n)=x^TAx f(x1,x2,,xn)=xTAx为标准形当且仅当 A A A为对角矩阵
化二次型为标准形
  • A , B A,B A,B为同阶方阵,若存在可逆矩阵 P P P使得 P T A P = B P^TAP=B PTAP=B,则称 A A A B B B合同,记为 A ≃ B A\simeq B AB
  • 矩阵的合同关系具有反身性,对称性,传递性
  • 任何一个二次型都可以经过可逆线性变换化为标准形
  • A A A为实对称矩阵,则 A A A与对角矩阵合同
  • (主轴定理) A A A n n n阶实对称矩阵,则二次型 f ( x 1 , ⋯   , x n ) = x T A x f(x_1,\cdots,x_n)=x^TAx f(x1,,xn)=xTAx可经正交变换 x = Q y x=Qy x=Qy化为标准形 λ 1 y 1 2 + ⋯ + λ n y n 2 \lambda_1y_1^2+\cdots+\lambda_ny_n^2 λ1y12++
  • 7
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值