概率笔记12——多维正态分布的最大似然估计

  我们在前面的章节中见识过二维正态分布,(X,Y)服从参数为μ1, μ2, σ1, σ2, ρ的二维正态分布,记作(X, Y)~N(μ1, μ2, σ1, σ2, ρ),它的密度函数:

  其中μ1是第1维度的均值,σ12是第1维度的方差,ρ是将两个维度的相关性规范到-1到+1之间的统计量,称为样本的相关系数,定义为:

  对于二维正态随机变量(X,Y),X和Y相互独立的充要条件是二者的协方差为0,也就是参数ρ=0。由于一维随机变量没有是否独立一说,ρ一定是0,因此没有在一维随机变量的正态分布中体现ρ。

  下图是一个标准二维正态分布和其在x-z,y-z平面的投影:

多维正态分布

  现在推广到多维,为了便于表达,我们用向量的形式表示随机变量和参数,对于n维随机变量:

  这里只考虑所有维度变量互相独立的情况,即ρ=0的情况,此时密度函数可表示为:

  上面的结果告诉我们,在各维度相互独立的情况下,多维正态分布的概率密度其实就是各个维度的正态分布密度函数的乘积。

  在①中:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是8位的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值