说句实话,最近在学多目标优化,真的差点被非支配解给支配了。
以前一直在做单目标优化,刚开始接触多目标还是有一点难,重点还是理解的多目标优化(多属性决策)思想。
其实多属性决策在生活中经常遇到。大学毕业找工作,工资,岗位,城市,家庭,都是要考虑的问题,需要在多个目标中衡量,做出比较合适的决策,注意这里是比较合适的决策,不是最好的或最佳的决策。同样的情况还适用于买房买车等。
所以有了这些经验,再返回来看多目标优化、非支配解、pareto解,可能会容易理解一些。
下面列一下涉及的几个基本概念,加了一些我自己的理解,如有不对的地方,请不吝赐教。
图片摘自:张菲, 张锦. 基于多目标优化的物流服务组合研究[J]
1.优化问题、单目标优化、多目标优化
目标优化问题一般地就是指通过一定的优化算法获得目标函数的最优化解。
单目标优化
当优化的目标函数为一个时称之为单目标优化(Single-objective Optimization Problem, SOP)。单目标优化的解为有限解、最优解,即在变量空间找不到其他解更优秀。
多目标优化
当优化的目标函数有两个或两个以上时称为多目标优化(Multi-objective Optimization Problem, MOP)。多目标优化的解通常是一组均衡解。这里对目标的度量通常用“好”、“不好”和“差”等模糊概念来表达。这种情况更接近实际生活工业,多目标优化的应用更加广泛。
2.非支配解(Pareto解)
概念:
Pareto解又称非支配解或不受支配解(nondominated solutions),Pareto 在1986 年提出,其定义为:假设任何二解S1及S2对所有目标而言,S1均优于S2,则我们称S1 支配S2,若S1没有被其他解所支配,则S1 称为非支配解(不受支配解),也称Pareto解。
性质:
pareto解是不惟一,是一个解集,如何由其中按某种理性准则选出最满意的结果,将是这一类多目标优化问题求解的关键。
举例说明:
两款汽车A和B,考虑三个目标,价格、空间、动力,若A的三个指标都强于B,则认为A支配B。若A的价格、空间强于B,但动力比B弱,则A无差别与B,不能支配B,就是非支配解。
3.pareto最优解集,pareto前沿
最优解集是指决策变量x集。最优解集对应的目标集合,即目标函数值y集。
多目标最优设计的方法是找到一组不同的解决方案,这些解决方案一起显示出可能的最佳多目标权衡曲面,在空间上形成的曲面称为Pareto前沿面,即帕累托最优前沿。
对于两个目标的问题,其Pareto最优前沿通常是条线。而对于多个目标,其Pareto最优前沿通常是一个超曲面。
4.适应度值
传统的适应度值就不适用于多目标优化算法,对于解的衡量需要加入新的标准。
利用相应的标准将非支配解进行筛选。保留下来的非支配解就是算法获取的最优秀的解群体,代表了算法的收敛性和多样性。
经典的解的选择机制有:聚类策略、拥挤度策略、Pareto支配策略、超网格划分策略
写在最后
人生就是马拉松,跑到终点才是胜利。