读论文|| 基准多目标优化问题的帕累托前沿的采样参考点

本文介绍了PlatEMO平台在处理多目标优化中如何生成均匀分布的参考点,特别关注不同帕累托前沿上的采样方法。实验结果表明,这些采样方法能更准确评估MOEAs的性能,尤其是在处理复杂形状的Pareto前沿时。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
摘要:进化算法在多目标优化方面的有效性已得到验证,并且在过去的二十年里提出了大量的多目标进化算法。为了定量比较不同算法的性能,需要在许多性能指标的计算中提取在基准问题的帕累托前沿上均匀分布的参考点集合。然而,对于许多具有不规则形状的帕累托前沿,对于参考点的采样方法并没有太多研究,尽管这是一个不容易的任务。最近,我们提出了一个名为PlatEMO的进化多目标优化平台,可以在每个帕累托前沿上自动生成参考点,并用它们来计算性能指标值。在本文中,我们报告了PlatEMO在不同类型的帕累托前沿上使用的参考点采样方法。实验结果表明,由所提出的采样方法生成的参考点可以比随机采样的参考点更准确地评估算法的性能

1. 引言
由于MOP的每个解都有多个目标值,直接比较这些目标值很难评估MOEAs的性能。因此,已经提出了一些性能度量指标,以定量评估不同MOEAs获得的结果,例如反向世代距离(IGD)[8]和超体积(HV)[9]。对于某些性能度量指标来说,需要在Pareto前沿(PF)上采样一组均匀分布的参考点作为基准值,例如
在这里插入图片描述
其中,P是解集的目标值,R是参考点集合,||·|| 表示 L2 范数。简而言之,IGD 计算了从R中每个点到P中最近点的平均最小距离,较小的IGD值表示P的收敛性和多样性更好。

然而,在各种Pareto前沿上采样一组均匀分布的参考点并不是一件容易的任务,并且目前对参考点采样方法的研究工作很少[10],[11]。为了解决这个问题,本文系统地介绍了在PlatEMO[12]中使用的参考点采样方法。PlatEMO是我们最近提出的一个进化多目标优化平台。PlatEMO可以自动在每个基准MOP的Pareto前沿上生成一组均匀分布的参考点,并使用它们来计算MOEAs获得的解的性能度量值。

本文的其余部分组织如下。第二部分回顾了三种在单位单纯形上采样参考点的方法,这是在大多数Pareto前沿上进行参考点采样的先决条件。第三部分介绍了几种不同类型Pareto前沿的参考点采样方法。第四部分介绍了在五个流行的多目标优化问题上使用五个常用MOEAs的实验结果,以验证所提出的参考点采样方法在性能度量计算中的有效性。第五部分总结了结论。

二、在单位单纯形上采样参考点
大多数 PF 上均匀分布的参考点可以通过变换单位单纯形上均匀采样的点来获得。在[13]、[14]等众多方法中,下面综述了三种在单位单纯形上采样参考点的代表性方法。

A. Das and Dennis’s Method
Das和Dennis的方法[15]是在单位单纯形上采样均匀分布参考点的最受欢迎的系统化方法,这常被分解式MOEAs[16]所采用。Das和Dennis的方法生成的M维单位单纯形上的一个参考点可以通过 s = (s1, s2, . . . , sM) 来定义,其中
在这里插入图片描述
H 是每个目标中的分割数。
图1展示了在 M=3 和 H=5 的情况下生成满足(2)的所有点的过程。具体而言,我们可以找到满足a,b ∈ {0, 0.2, . . . , 1}和a ≤ b的所有a和b的组合,然后令s1 = a - 0,s2 = b - a,s3 = 1 - b。因此,上述问题等同于找到{0, 0.2, . . . , 1}的所有2重复组合,这进一步等同于找到{0, 0.2, . . . , 1.2}的所有2组合。总结起来,Das和Dennis的方法的步骤如下:
在这里插入图片描述
以下以H=5,M=3 具体介绍
在这里插入图片描述

在这里插入图片描述
B. Deb and Jain’s Method
使用两层参考点,生成方法如下:
在这里插入图片描述
在实践中,当M≤5时使用Das和Dennis的方法,其他情况下使用Deb和Jain的方法。

C. Mixture Uniform Design
上述两种采样方法的缺点是参考点的数量受到参数M和H的限制。相比之下,混合均匀设计[18]提供了一种更灵活的采样方法,其中参考点的数量可以是任意的。简而言之,它在一个(M-1)维超立方体中均匀生成N个点,然后将它们转换为M维单位单纯形。具体而言,混合均匀设计的过程包括以下四个步骤:
在这里插入图片描述
假设矩阵W包含K列,则计算CD2应该进行CKM-1次,因此混合均匀设计的计算复杂度明显大于Das和Dennis的方法以及Deb和Jain的方法。
图4展示了使用M = 3和M = 10的混合均匀设计生成的100个和101个参考点。从图中可以明显看出,参考点的数量可以是任意的;然而,得到的参考点分布比Das和Dennis的方法生成的参考点不均匀,并且许多极端点被忽略了。
III. SAMPLING REFERENCE POINTS ON PARETO FRONTS
直观地说,多目标优化问题的帕累托前沿上的参考点可以通过均匀采样决策变量来获得。例如,M目标的DTLZ1 [4]问题的帕累托前沿由定义:
在这里插入图片描述
其中 xj ∈ [0, 1] 是决策变量,fj 是目标函数的值。如图5所示,如果我们均匀生成 xj 并通过(7)计算参考点,得到的参考点分布是不均匀的。因此,需要直接在目标空间采样参考点。如[10]所建议的,由于DTLZ1的帕累托前沿可以表示为:
在这里插入图片描述
对于DTLZ1问题,其中0 ≤ fj ≤ 0.5,可以通过将单位单纯形上的点的目标值减半来获得参考点。同样地,M目标的DTLZ2问题的PF可以表示为:
在这里插入图片描述
对于 0 ≤ f j ≤ 1 0 ≤ f_j ≤ 1 0fj1,DTLZ2的参考点可以通过将单位单纯形上的点映射到单位超球体上来获得,即计算每个点与原点在单位超球体上的交点。图6显示了在3目标的DTLZ1和DTLZ2的帕累托前沿上采样的120个参考点。值得注意的是,这里采用了Das和Dennis的方法在单位单纯形上生成均匀分布的参考点。

然而,上述采样方法只能生成规则且平滑的帕累托前沿上的参考点。在本节中,我们介绍了适用于具有更复杂帕累托前沿的多目标优化问题的参考点采样方法。

A. 对凹凸帕累托前沿(DTLZ2的变种)进行参考点采样
A. Sampling Reference Points on Concave and Convex PFs (Variants of DTLZ2)

这一小节介绍了DTLZ2的四个变种的参考点采样方法,它们分别是:凸形DTLZ2 [17],反向DTLZ2 [19],C2-DTLZ2 [19] 和DTLZ2BZ [20]。图7中显示了这四个多目标优化问题的帕累托前沿上采样的参考点。多目标凸形DTLZ2的帕累托前沿可以表示为:
The PF of M-objective convex DTLZ2 can be written as
在这里插入图片描述
其中 0 ≤ f j ≤ 1 0 ≤ f_j ≤ 1 0f

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值