529.扫雷游戏
让我们一起来玩扫雷游戏!
给定一个代表游戏板的二维字符矩阵。 'M' 代表一个未挖出的地雷,'E' 代表一个未挖出的空方块,'B' 代表没有相邻(上,下,左,右,和所有4个对角线)地雷的已挖出的空白方块,数字('1' 到 '8')表示有多少地雷与这块已挖出的方块相邻,'X' 则表示一个已挖出的地雷。
现在给出在所有未挖出的方块中('M'或者'E')的下一个点击位置(行和列索引),根据以下规则,返回相应位置被点击后对应的面板:
如果一个地雷('M')被挖出,游戏就结束了- 把它改为 'X'。
如果一个没有相邻地雷的空方块('E')被挖出,修改它为('B'),并且所有和其相邻的未挖出方块都应该被递归地揭露。
如果一个至少与一个地雷相邻的空方块('E')被挖出,修改它为数字('1'到'8'),表示相邻地雷的数量。
如果在此次点击中,若无更多方块可被揭露,则返回面板。
示例 1:
输入:
[['E', 'E', 'E', 'E', 'E'],
['E', 'E', 'M', 'E', 'E'],
['E', 'E', 'E', 'E', 'E'],
['E', 'E', 'E', 'E', 'E']]
Click : [3,0]
输出:
[['B', '1', 'E', '1', 'B'],
['B', '1', 'M', '1', 'B'],
['B', '1', '1', '1', 'B'],
['B', 'B', 'B', 'B', 'B']]
解释:
示例 2:
输入:
[['B', '1', 'E', '1', 'B'],
['B', '1', 'M', '1', 'B'],
['B', '1', '1', '1', 'B'],
['B', 'B', 'B', 'B', 'B']]
Click : [1,2]
输出:
[['B', '1', 'E', '1', 'B'],
['B', '1', 'X', '1', 'B'],
['B', '1', '1', '1', 'B'],
['B', 'B', 'B', 'B', 'B']]
解释:
注意:
输入矩阵的宽和高的范围为 [1,50]。
点击的位置只能是未被挖出的方块 ('M' 或者 'E'),这也意味着面板至少包含一个可点击的方块。
输入面板不会是游戏结束的状态(即有地雷已被挖出)。
简单起见,未提及的规则在这个问题中可被忽略。例如,当游戏结束时你不需要挖出所有地雷,考虑所有你可能赢得游戏或标记方块的情况。
题解1:深度优先遍历
/*
* @lc app=leetcode.cn id=529 lang=java
*
* [529] 扫雷游戏
*/
// @lc code=start
class Solution {
int[] dirX = { -1, -1, 0, 1, 1, 1, 0, -1 };
int[] dirY = { 0, 1, 1, 1, 0, -1, -1, -1 };
public char[][] updateBoard(char[][] board, int[] click) {
// 深度优先遍历
// 时间复杂度:O(n*m)
// 空间复杂度:O(n*m)
int x = click[0], y = click[1];
if (board[x][y] == 'M') {
board[x][y] = 'X';
} else {
dfs(board, x, y);
}
return board;
}
private void dfs(char[][] board, int x, int y) {
int cnt = 0, n = board.length, m = board[0].length;
for (int i = 0; i < 8; i++) {
int newX = x + dirX[i];
int newY = y + dirY[i];
if (newX < 0 || newX > n - 1 || newY < 0 || newY > m - 1) {
continue;
}
if (board[newX][newY] == 'M') {
++cnt;
}
}
if (cnt > 0) {
board[x][y] = (char) (cnt + '0');
} else {
board[x][y] = 'B';
for (int i = 0; i < 8; i++) {
int newX = x + dirX[i];
int newY = y + dirY[i];
if (newX < 0 || newX > n - 1 || newY < 0 || newY > m - 1 || board[newX][newY] == 'B') {
continue;
}
dfs(board, newX, newY);
}
}
}
}
题解2:广度优先遍历