2021-05-18

529.扫雷游戏

让我们一起来玩扫雷游戏!

给定一个代表游戏板的二维字符矩阵。 'M' 代表一个未挖出的地雷,'E' 代表一个未挖出的空方块,'B' 代表没有相邻(上,下,左,右,和所有4个对角线)地雷的已挖出的空白方块,数字('1' 到 '8')表示有多少地雷与这块已挖出的方块相邻,'X' 则表示一个已挖出的地雷。

现在给出在所有未挖出的方块中('M'或者'E')的下一个点击位置(行和列索引),根据以下规则,返回相应位置被点击后对应的面板:

如果一个地雷('M')被挖出,游戏就结束了- 把它改为 'X'。
如果一个没有相邻地雷的空方块('E')被挖出,修改它为('B'),并且所有和其相邻的未挖出方块都应该被递归地揭露。
如果一个至少与一个地雷相邻的空方块('E')被挖出,修改它为数字('1'到'8'),表示相邻地雷的数量。
如果在此次点击中,若无更多方块可被揭露,则返回面板。
 

示例 1:

输入: 

[['E', 'E', 'E', 'E', 'E'],
 ['E', 'E', 'M', 'E', 'E'],
 ['E', 'E', 'E', 'E', 'E'],
 ['E', 'E', 'E', 'E', 'E']]

Click : [3,0]

输出: 

[['B', '1', 'E', '1', 'B'],
 ['B', '1', 'M', '1', 'B'],
 ['B', '1', '1', '1', 'B'],
 ['B', 'B', 'B', 'B', 'B']]

解释:

示例 2:

输入: 

[['B', '1', 'E', '1', 'B'],
 ['B', '1', 'M', '1', 'B'],
 ['B', '1', '1', '1', 'B'],
 ['B', 'B', 'B', 'B', 'B']]

Click : [1,2]

输出: 

[['B', '1', 'E', '1', 'B'],
 ['B', '1', 'X', '1', 'B'],
 ['B', '1', '1', '1', 'B'],
 ['B', 'B', 'B', 'B', 'B']]

解释:

注意:

输入矩阵的宽和高的范围为 [1,50]。
点击的位置只能是未被挖出的方块 ('M' 或者 'E'),这也意味着面板至少包含一个可点击的方块。
输入面板不会是游戏结束的状态(即有地雷已被挖出)。
简单起见,未提及的规则在这个问题中可被忽略。例如,当游戏结束时你不需要挖出所有地雷,考虑所有你可能赢得游戏或标记方块的情况。

题解1:深度优先遍历

/*
 * @lc app=leetcode.cn id=529 lang=java
 *
 * [529] 扫雷游戏
 */

// @lc code=start
class Solution {
    int[] dirX = { -1, -1, 0, 1, 1, 1, 0, -1 };
    int[] dirY = { 0, 1, 1, 1, 0, -1, -1, -1 };

    public char[][] updateBoard(char[][] board, int[] click) {
        // 深度优先遍历
        // 时间复杂度:O(n*m)
        // 空间复杂度:O(n*m)
        int x = click[0], y = click[1];
        if (board[x][y] == 'M') {
            board[x][y] = 'X';
        } else {
            dfs(board, x, y);
        }
        return board;
    }

    private void dfs(char[][] board, int x, int y) {
        int cnt = 0, n = board.length, m = board[0].length;
        for (int i = 0; i < 8; i++) {
            int newX = x + dirX[i];
            int newY = y + dirY[i];
            if (newX < 0 || newX > n - 1 || newY < 0 || newY > m - 1) {
                continue;
            }

            if (board[newX][newY] == 'M') {
                ++cnt;
            }
        }
        if (cnt > 0) {
            board[x][y] = (char) (cnt + '0');
        } else {
            board[x][y] = 'B';
            for (int i = 0; i < 8; i++) {
                int newX = x + dirX[i];
                int newY = y + dirY[i];

                if (newX < 0 || newX > n - 1 || newY < 0 || newY > m - 1 || board[newX][newY] == 'B') {
                    continue;
                }
                dfs(board, newX, newY);
            }
        }
    }
}

题解2:广度优先遍历

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

suncj1314

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值