Keras学习---MLP和CNN模型建立篇

本文介绍了如何使用Keras构建最简单的MLP和CNN模型进行图像分类。MLP模型包含多个全连接层、激活函数和Dropout层,而CNN模型包括卷积层、池化层和Dropout,其参数总数相近但结构更复杂,能获得更高的准确率。
摘要由CSDN通过智能技术生成


目前阶段,仅考虑线线性堆叠且单输出的网络结构,更复杂的网络有多任务(即多输出)的网络拓扑结构。

1. 最简单的MLP模型
model.add(Dense(512, input_shape=(784,)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))



通过summary函数可以看到模型的总结,如模型的参数个数,每层的output Shape。
原来,dense和activation及drop都是独立分层的。
Layer (type)                     Output Shape          Param #     Connected to
====================================================================================================
dense_1 (Dense)                  (None, 512)           401920      dense_input_1[0][0]
____________________________________________________________________________________________________
activation_1 (Activation)        (None, 512)           0           dense_1[0][0]
____________________________________________________________________________________________________
dropout_1 (Dropout)              (None, 512)           0           activation_1[0][0]
____________________________________________________________________________________________________
dense_2 (Dense)                  (None, 512)           262656      dropout_1[0][0]
____________________________________________________________________________________________________
activation_2 (Activation)        (None, 512)           0           dense_2[0][0]
__________________________________________________________________
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值