机器学习-1 概念和单变量线性回归

概念:

脉络:统计概率 ->机器学习 -> 数据挖掘 / 模式识别 / NLP

机器学习是研究如何让计算机具有自我学习能力的学科;

Tom Mitchell把它描述为:假设任务(task)为T, 效果衡量指标为(performance measure)P,先验知识(experience)为E;那么ML就是从E学习,作用到T,并通过P来衡量效果;

机器学习分类:

有监督:先学习标注样本E,再作用到T上,标注值也就是output离散的是分类问题,连续的为回归问题;

无监督:无标注,不学习,聚类;

比如,有数据

<房屋尺寸、房屋价格(连续值)、房屋评价(离散值- good or bad)>,

根据房屋尺寸预测房屋价格:有监督的回归问题;

          根据房屋尺寸和房屋价格预测房屋的评价:有监督的分类问题;

          根据房屋尺寸、房屋价格、房屋评价,看哪些房子比较类似:无监督问题;


线性回归:

Task:根据房屋尺寸预测房屋价格的回归,定义:

 m:训练(标注好)的样本个数

x:输入-尺寸,称之为特征;

y:输出-价格,称之为目标、标注结果

hypothesis: 假设(函数),即从x到y的映射;

既然是一元(就一个特征:尺寸)线性,自然会先设:

接下来的问题就是怎么选择参数了;因为假设是,实际是y,那最优的就使得假设与实际最接近,也就是和y距离最接近,这里的距离称为是代价函数(cost function),如下:

其中:正负误差;1/2m为后续求解求导方便;

那么使得代价函数最小的即为所求,就完事了;

 在计算之前,我们总结一下模型的4个方面:

1.       Hypothesis:假设(输入到输出的映射)

2.       Paramters:参数:

3.       Cost Function:代价函数:

4.       Goal:目标

Minimize

求解方法-梯度下降:

以x-y为例,如下图,找G1为所求的最低点,Si为第i步,那下一步我们应该往上还是往下咧?明显往下,就这样一直往下,就能找到最低点;怎么描述上方呢-梯度,上方是梯度绝对值上升的方向,下方是梯度值下降的方向;

           数学表达为:设当前为第i步骤,梯度为D(i), 则,下一步应为:

Si+1 = Si – k*D(i);

上面公式里多了一个k,定位为逼近步长/速度,k越小,需要的迭代的次数就越多,如蓝线部分;k越大,就会出现震荡,如红线部分;另外,我们无需动态调整K来让步长和梯度成同步变化,也就对于梯度值大的步长设置大一些,梯度小的步长短一些,如绿色线,因为梯度的变化会反映到D上;

           另外,从上上图中可以看出,梯度下降是局部最优,比如起始点在S’i,那找到G2就停止了;

扩展到二维上也是这样,下面是的平面图,x、y分别是,z是J(),代价函数,梯度是对x,y求导;

           

算法描述为:

// 梯度下降算法

迭代直到收敛 {

(i= 0, 1;)

}

  推导如下


https://class.coursera.org/ml-003/class


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值