高等数学

#第二章:导数与微分
##第六节 隐函数的导数 由参数方程所确定的函数的导数 相关变化率
###1、隐函数的导数
显函数: y = 11 − x 3 y=\sqrt[3]{11-x} y=311x
隐函数: x + y 3 − 1 = 0 x+y^3-1=0 x+y31=0;
隐函数显化:将 x + y 3 − 1 = 0 x+y^3-1=0 x+y31=0转换成 y = 1 − x 3 y=\sqrt[3]{1-x} y=31x

##多元函数的基本概念
在很多自然现象以及实际的问题中,经常会遇到多个变量之间的依赖关系,如圆柱体的体积 V V V和它的半径 r r r 、高 h h h之间具有关系: V = π r 2 h V=\pi r^2h V=πr2h
这里,当 r , h r,h r,h在集合 { ( r , h ) ∣ r > 0 , h > 0 } \{(r,h)|r>0,h>0\} {(r,h)r>0,h>0} 内,取定一对值 ( r , h ) (r,h) (r,h)时, V V V的对应值就随之确定。
二元函数:
D D D R 2 R^2 R2的一个非空子集,称映射 f : D → R f:D\rightarrow R f:DR 为定义在 D D D上的一个二元函数,通常记为: z = f ( x , y ) , ( x , y ) ∈ D z=f(x,y),(x,y)\in D z=f(x,y),(x,y)D
其中点集 D D D称为该函数的定义域, ( x , y ) (x,y) (x,y)称为自变量, z z z称为因变量,
偏导数:
1)引用偏导数的目的是研究函数的变化率;
2)设二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某一邻域内有定义,当 y y y固定在 y 0 y_0 y0 x x x x 0 x_0 x0处有增量 Δ x \Delta x Δx 时,相应的函数就有增量 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) f(x_0+\Delta x,y_0)-f(x_0,y_0) f(x0+Δx,y0)f(x0,y0)
如果 lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{\Delta x \rightarrow 0} \frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x } Δx0limΔxf(x0+Δx,y0)f(x0,y0)
存在,则称此极限为函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处对 x x x的偏导数,记作: ∂ z ∂ x ∣ x = x 0 y = y 0 , ∂ f ∂ x ∣ x = x 0 y = y 0 , f x ( x 0 , y 0 ) \left. \frac{{\partial }z}{{\partial }x} \right| _{x=x_0 y=y_0},\left. \frac{{\partial }f}{{\partial }x} \right| _{x=x_0 y=y_0},f_x(x_0,y_0) xzx=x0y=y0,xfx=x0y=y0,fx(x0,y0)

如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在区域 D D D内每一个点 处对 的偏导数都存在,那么这个偏导数就是 x , y x,y x,y的函数,它就称为函数 z = f ( x , y ) z=f(x,y) z=f(x,y)对自变量 x x x的偏导数,记作: ∂ z ∂ x , ∂ f ∂ x , z x , f x ( x , y ) \frac{{\partial }z}{{\partial }x} ,\frac{{\partial }f}{{\partial }x},z_x,f_x(x,y) xz,xf,zx,fx(x,y)

###多元函数的极值及其求法
极值的定义:
设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的定义域 D D D P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) D D D的内点,若存在着 P 0 P_0 P0的某个邻域 U ( P 0 ) ⊂ D U(P_0)\subset D U(P0)D ,使得对于该邻域内异于 P 0 P_0 P0的任何点 ( x , y ) (x,y) (x,y)都有 f ( x , y ) &lt; f ( x 0 , y 0 ) f(x,y)&lt;f(x_0,y_0) f(x,y)<f(x0,y0) ,则称函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)有极大值 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0) ,点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)称为函数 f ( x , y ) f(x,y) f(x,y) 的极大值点。
定理1(必要条件):
设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)具有偏导数,且在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处有极值,则有: f x ( x 0 , y 0 ) = 0 , f y ( x 0 , y 0 ) = 0 f_x(x_0,y_0)=0,f_y(x_0,y_0)=0 fx(x0,y0)=0,fy(x0,y0)=0
定理2(充分条件):
设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某邻域内连续且有一阶及二阶连续导数,且 f x ( x 0 , y 0 ) = 0 , f y ( x 0 , y 0 ) = 0 f_x(x_0,y_0)=0,f_y(x_0,y_0)=0 fx(x0,y0)=0,fy(x0,y0)=0 ,令: f x x ( x 0 , y 0 ) = A , f x y ( x 0 , y 0 ) = B , f y y ( x 0 , y 0 ) = C f_xx(x_0,y_0)=A,f_xy(x_0,y_0)=B,f_yy(x_0,y_0)=C fxx(x0,y0)=A,fxy(x0,y0)=B,fyy(x0,y0)=C
则函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处是否取得极值的条件如下:
(1) A C − B 2 &gt; 0 AC-B^2&gt;0 ACB2>0 时具有极值,且当 A &lt; 0 A&lt;0 A<0时有极大值,当 A &gt; 0 A&gt;0 A>0时有极小值;
(2) A C − B 2 &lt; 0 AC-B^2&lt;0 ACB2<0 时没有极值;
(3) A C − B 2 = 0 AC-B^2=0 ACB2=0 时可能有极值,也可能没有极值,需要另外讨论
拉格朗日乘法:
寻求函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在条件 ϕ ( x , y ) = 0 \phi(x,y)=0 ϕ(x,y)=0下的可能极值点,先做拉格朗日函数: L ( x , y ) = f ( x , y ) + λ ϕ ( x , y ) L(x,y)=f(x,y)+\lambda\phi(x,y) L(x,y)=f(x,y)+λϕ(x,y)
其中 λ \lambda λ是拉格朗日乘子,为常数;
建立方程组:
{ f x ( x , y ) + λ ϕ x ( x , y ) = 0 , f y ( x , y ) + λ ϕ y ( x , y ) = 0 , ϕ ( x , y ) = 0 , \begin{cases} f_x(x,y)+\lambda\phi_x(x,y)=0,\\ f_y(x,y)+\lambda\phi_y(x,y)=0,\\ \phi(x,y)=0, \end{cases} fx(x,y)+λϕx(x,y)=0,fy(x,y)+λϕy(x,y)=0,ϕ(x,y)=0,
由方程组解出的 x , y , λ x,y,\lambda x,y,λ ,可能就是我们需找的在附加条件下的极值点

##方向导数与梯度:
1.背景:
偏导数反映的是函数沿着坐标轴方向的变化率,但是许多物理现象告诉我们,变化率的方向是任意的,比如:热空气要向冷的地方流动,气象学中就要确定大气温度、气压沿着某些方向的变化率,因此,我们来讨论函数沿着任一指定方向的变化率问题。
2.概念:
l l l x O y xOy xOy平面上以 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)为始点的一条射线, e l = ( c o s α , c o s β ) e_l=(cos\alpha,cos\beta) el=(cosα,cosβ) 是与 l l l同方向的单位向量,射线 l l l的参数方程为: x = x 0 + t c o s α y = y 0 + t c o s β ( t &gt; = 0 ) x=x_0+tcos\alpha \\y=y_0+tcos\beta \\(t&gt;=0) x=x0+tcosαy=y0+tcosβ(t>=0)
方向倒数
若以下表达式成立,则称此极限为函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 P_0 P0沿方向 l l l 的方向导数,记作 ∂ f ∂ l ∣ x 0 , y 0 \left. \frac{{\partial }f}{{\partial }l} \right| _{x_0,y_0} lfx0,y0 ,即: ∂ f ∂ l ∣ x 0 , y 0 = lim ⁡ t → 0 + f ( x 0 + t c o s α , y 0 + t c o s β ) − f ( x 0 , y 0 ) t \left. \frac{{\partial }f}{{\partial }l} \right| _{x_0,y_0}=\lim_{t \rightarrow 0^+} \frac{f(x_0+tcos\alpha,y_0+tcos\beta)-f(x_0,y_0)}{t } lfx0,y0=t0+limtf(x0+tcosα,y0+tcosβ)f(x0,y0)
3.定理:
如果函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 P_0 P0可微分,那么函数在该点任意一方向 l l l的方向导数存在,且有: ∂ f ∂ l ∣ x 0 , y 0 = lim ⁡ t → 0 + f ( x 0 + t c o s α , y 0 + t c o s β ) − f ( x 0 , y 0 ) t \left. \frac{{\partial }f}{{\partial }l} \right| _{x_0,y_0}=\lim_{t \rightarrow 0^+} \frac{f(x_0+tcos\alpha,y_0+tcos\beta)-f(x_0,y_0)}{t } lfx0,y0=t0+limtf(x0+tcosα,y0+tcosβ)f(x0,y0)
其中, c o s α , c o s β cos\alpha,cos\beta cosα,cosβ是方向 l l l的方向余弦。
4.意义:
从方向导数的意义可以知道,方向导数就是函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)处沿方向 l l l的变化率。

【例】
求函数 在点 处沿从点 到点 的方向导数。
解:这里的方向 即向量 的方向,与 同向的单位向量为

因为函数可以微分,且

故所求方向导数为:

梯度
1.定义
设函数 f ( x , y ) f(x,y) f(x,y)在平面区域 D D D内具有一阶连续偏导数,且对于每一个点 P 0 ( x 0 , y 0 ) ∈ D P_0(x_0,y_0)\in D P0(x0,y0)D,都可定出一个向量 f x ( x 0 , y 0 ) i ⃗ + f y ( x 0 , y 0 ) j ⃗ f_x(x_0,y_0)\vec{i}+f_y(x_0,y_0)\vec{j} fx(x0,y0)i +fy(x0,y0)j
这个向量称为函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)的***梯度***,记作 g r a d f ( x 0 , y 0 ) gradf(x_0,y_0) gradf(x0,y0)或者 ∇ f ( x 0 , y 0 ) \nabla f(x_0,y_0) f(x0,y0) ,即 g r a d f ( x 0 , y 0 ) = ∇ f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) i ⃗ + f y ( x 0 , y 0 ) j ⃗ gradf(x_0,y_0)=\nabla f(x_0,y_0)=f_x(x_0,y_0)\vec{i}+f_y(x_0,y_0)\vec{j} gradf(x0,y0)=f(x0,y0)=fx(x0,y0)i +fy(x0,y0)j
其中$\nabla=\frac{{\partial }}{{\partial }x}\vec{i} +\frac{{\partial }}{{\partial }y}\vec{j} , 称 为 ( 二 维 的 ) ∗ ∗ ∗ 向 量 微 分 算 子 ∗ ∗ ∗ , 2. 应 用 1 − 计 算 方 向 导 数 : 如 果 函 数 , 称为(二维的)***向量微分算子***, 2.应用1-计算方向导数: 如果函数 2.1f(x,y)$ 在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 可微分, e l = c o s α + c o s β e_l=cos\alpha+cos\beta el=cosα+cosβ是与 l l l同方向的单位向量,则方向导数:
∂ f ∂ l ∣ x 0 , y 0 = f x ( x 0 , y 0 ) c o s α + f y ( x 0 , y 0 ) c o s β = g r a d f ( x 0 , y 0 ) × e l ⃗ = ∣ g r a d ( f ( x , y ) ) ∣ c o s θ \left. \frac{{\partial }f}{{\partial }l} \right| _{x_0,y_0}=f_x(x_0,y_0)cos\alpha+f_y(x_0,y_0)cos\beta=gradf(x_0,y_0)\times\vec{e_l}=|grad(f(x,y))|cos\theta lfx0,y0=fx(x0,y0)cosα+fy(x0,y0)cosβ=gradf(x0,y0)×el =grad(f(x,y))cosθ
其中 θ = ( g r a d f ( x 0 , y 0 ) , e l ⃗ ) \theta=(gradf(x_0,y_0),\vec{e_l}) θ=(gradf(x0,y0),el )方向夹角
从上面的表达式中,可以看出函数在一点的梯度与其对应的方向导数之间的关系,
(1)当 θ = 0 \theta=0 θ=0 ,即 e l ⃗ \vec{e_l} el 与梯度 g r a d f ( x 0 , y 0 ) gradf(x_0,y_0) gradf(x0,y0)方向相同时,函数 f ( x , y ) f(x,y) f(x,y)增加最快。
(2)当 θ = π \theta=\pi θ=π ,即 e l ⃗ \vec{e_l} el 与梯度 g r a d f ( x 0 , y 0 ) gradf(x_0,y_0) gradf(x0,y0)方向相反时,函数 f ( x , y ) f(x,y) f(x,y)减少最快。
(3)当 θ = π / 2 \theta=\pi/2 θ=π/2,即 e l ⃗ \vec{e_l} el 与梯度 g r a d f ( x 0 , y 0 ) gradf(x_0,y_0) gradf(x0,y0)方向正交时,函数 f ( x , y ) f(x,y) f(x,y)变化率为0。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值