搞深度学习主要看GPU,人人都知道A100、H100好,但不是每个人都有这么充足的预算和实力配置这两张显卡,尤其对于我们刚踏入深度学习领域的学习者来说,那么对于初学者,我们有什么样高性价比的显卡可以推荐呢?
一般而言英伟达GeForce系列里的旗舰级显卡性价比比较高,如3090 4090等
一 3090 24GB
这是上一代的旗舰显卡,基于NVIDIA Ampere架构,配备了10496个CUDA核心,FP32性能达到了29.28TFLOPS,放在如今依然能打,24GB的显存可以跑95%以上深度学习遇到的大模型了,而且因为是上一代的显卡,如今的价格十分低廉,性价比比较高,6000多左右就能入手一张,而4090现在要1.8w才能入手一张,而且RTX 3090 可以通过 NVLink 实现双 GPU 并行工作,提高性能,40系列的显卡现在已取消了Nvlink,因此配置4卡及以上服务器,3090系列性价比很高,这张卡是矿卡的概率较高,推荐有经验的老司机才考虑入手。
二 4090等40系列
4090是前两年才推出的旗舰消费级显卡,采用了全新的DLSS 3技术,相比上一代的DLSS 2,性能提升可达2-4倍,拥有16384个CUDA核心,FP32性能达到了82.58TFLOPS,使它能够适用于图形设计、复杂的视频编辑工作以及深度学习领域,是大多数个人以及小型实验室预算所能配置的最高级显卡了,缺点就是比较贵,单卡售价就要1.8w了,因此预算不够的也可以考虑40系列的其他卡如4060ti 16G版本的现在也才3500一张卡,跑深度学习最重要的就是显存,显存决定了你能不能跑这个模型,只要能跑,哪怕速度慢一点是可以的,而且睡觉的时候我们也可以运行电脑,只要大部分模型能在睡醒之后跑好就可以了。
下面这张图是每一美元可以购买到的显卡算力性能,这样看下来确实是消费级别的GeForce显卡最有性价比。
三 V100系列
上面介绍的显卡在单卡的时候是性能是很好的,也很有性价比,但是一旦组成8卡及以上的服务器集群就不太够用了,因为这些显卡大多数不支持Nvlink,如果你想要服务器集群,但你预算又低,怎么办呢? 这个时候就推荐购买V100显卡 32GB Nvlink版本的,它是NVIDIA推出的专用于高性能计算的GPU,基于Volta架构,对于深入学习做了专门的优化,具有加速功能,有着5120个CUDA核心,32GB的显存可以训练99%的模型了,而且因为有着Nvlink,它的显存带宽很宽,多个GPU之间通信速度很快,这种卡目前在6000块钱左右,对于深度学习领域性价比还是很高的。
四 图形卡系列推荐英伟达A4000
英伟达A4000基于NVIDIA Ampere架构构建,有着6144个CUDA核心,单精度浮点运算能力为19.2 TFLOPS,是用于视频渲染,图像处理的专业显卡,显存为16GB,一般而言我们可以用它训练Stable Diffusion的微调大模型,A4000以下的卡显存太小了,不适用于大多数场景,而A4000以上的卡,性能足够了,速度也快但是成本较高了,在我们的数据测试当中,A4500和A5000分别比a4000快了10%和20%左右,但是成本远高于20%,英伟达A4000的售价目前在4000块钱左右,在图形卡里面无疑是性价比最高的显卡了,再过几年A4000的性能跟不上的时候,英伟达的4000ADA版本就是图形卡领域里面性价比最高的显卡了。