python-安装face_recognition人脸识别模块

本文详细介绍如何使用dlib和face_recognition库进行人脸识别,包括安装步骤、关键点检测及使用案例。通过dlib的机器学习算法和face_recognition的深度学习模型,实现高精度的人脸识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装方法:

第一步 (1)dlib

可以使用pip install dlib进行安装,也可以下载下来后用pip安装;

第二步(2)face_recognition

可以使用pip install face_recognition进行安装,也可以下载下来后先编译再安装,如果直接用pip install face_recognition安装,会经过三步:

(1)找到face_recognition 井下载。

(2)安装dlib 库19.7.0 版本(这步操作一般都会失败,建议提前按照前面14.2 节内容单独安装) 。

(3)下载并安装face_recognition_rnodels-0.3.0 . tar.gz 模型(由于网速环境等因素,这步操作也很容易出错, 建议手动安装。

python setup.py build ,进行编译

python setup.py install ,进行按装

相关模块解释:

dlib : 一个强大的机器学习的C++库,包含了许多机器学习常用的算法,同时支持大量的数值算法如矩阵、大整数、随机数运算等。在本案例中,它属于间接依赖,为face recognition 模块提供支撑。

face_recognition: -个人脸识别库。该模块使用dlib 模块中最先进的人脸识别深度学习算法,使得识别准确率在《Labled Faces in the world》测试基准下达到了99.38% 。在本案例中,它属于直接依赖,提供人脸识别功能。

face_recognition_ models: face recognition 模块所使用的模型文件。
访问网站: https://pypi.python.org/pypi/face_recognition_models
找到face_recognition
rnodels-0 .3. 0. tar.gz 模型安装包的下载地址,下载下来后解压,在命令行窗口切换到解压目录,然后依次i输入以下命令:

使用案例:

显示人脸中关键点:

from PIL import Image,ImageDraw
import face_recognition

image=face_recognition.load_image_file("琼斯.jpg")
face_landmarks_list=face_recognition.face_landmarks(image)
for face_landmarks in face_landmarks_list:
    pil_image=Image.fromarray(image)
    d=ImageDraw.Draw(pil_image)
    for facial_feature in face_landmarks.keys():
        d.line(face_landmarks[facial_feature],width=5)
    pil_image.show()

输出结果:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值