安装方法:
第一步 (1)dlib
可以使用pip install dlib进行安装,也可以下载下来后用pip安装;
第二步(2)face_recognition
可以使用pip install face_recognition进行安装,也可以下载下来后先编译再安装,如果直接用pip install face_recognition安装,会经过三步:
(1)找到face_recognition 井下载。
(2)安装dlib 库19.7.0 版本(这步操作一般都会失败,建议提前按照前面14.2 节内容单独安装) 。
(3)下载并安装face_recognition_rnodels-0.3.0 . tar.gz 模型(由于网速环境等因素,这步操作也很容易出错, 建议手动安装。
python setup.py build ,进行编译
python setup.py install ,进行按装
相关模块解释:
dlib : 一个强大的机器学习的C++库,包含了许多机器学习常用的算法,同时支持大量的数值算法如矩阵、大整数、随机数运算等。在本案例中,它属于间接依赖,为face recognition 模块提供支撑。
face_recognition: -个人脸识别库。该模块使用dlib 模块中最先进的人脸识别深度学习算法,使得识别准确率在《Labled Faces in the world》测试基准下达到了99.38% 。在本案例中,它属于直接依赖,提供人脸识别功能。
face_recognition_ models: face recognition 模块所使用的模型文件。
访问网站: https://pypi.python.org/pypi/face_recognition_models
找到face_recognition rnodels-0 .3. 0. tar.gz 模型安装包的下载地址,下载下来后解压,在命令行窗口切换到解压目录,然后依次i输入以下命令:
使用案例:
显示人脸中关键点:
from PIL import Image,ImageDraw
import face_recognition
image=face_recognition.load_image_file("琼斯.jpg")
face_landmarks_list=face_recognition.face_landmarks(image)
for face_landmarks in face_landmarks_list:
pil_image=Image.fromarray(image)
d=ImageDraw.Draw(pil_image)
for facial_feature in face_landmarks.keys():
d.line(face_landmarks[facial_feature],width=5)
pil_image.show()
输出结果: