目录
tensorflow自1.0版本起,models就被单独拿出来作为一个独立模块。tensorflow的github库中存在两个部分,tensorflow是我们常用的框架源码部分,而models则是其扩展模块部分,需要单独进行安装。models模块收集了研究者们提出的很多优秀的网络模型,包括但不限于计算机视觉方向、自然语言处理方向和强化学习方向等。
1、下载models源码
GitHub地址:https://github.com/tensorflow/models
Gitee地址:https://gitee.com/sunmingyang1987/tensorflow-object-detection-api/tree/master
从以上两个地址下载的是最新的,如果你的tensorflow是1.x那么需要下载历史版本,建议tensorflow1.14.0对应安装models1.13.0,不会出现莫名其妙的报错。
2、下载、安装protoc,并进行编译
2.1 下载、安装protoc
GitHub地址:https://github.com/protocolbuffers/protobuf/releases
挑选适合自己的版本下载。
百度云盘链接:https://pan.baidu.com/s/17V_Ol61YQqCkePPZVJjF9Q
提取码:5lo2
下载后复制到与models同名的文件夹下,解压,生成:bin、include。将bin文件夹下的protoc.exe复制到C:\Windows\System32文件夹下。cmd打开命令行界面,输入命令protoc,出现如下界面说明安装成功:
2.2 编译proto文件
在models/research下运行Windows PowerShell(注意,这里必须是PowerShell,运行cmd会报错),输入如下命令:
Get-ChildItem object_detection/protos/*.proto | Resolve-Path -Relative | %{ protoc $_ --python_out=. }
运行完成后,可以检查object_detection/protos/文件夹,如果每个proto文件都成了对应的以py为后缀的python源码,就说明编译成功了。
3、添加环境变量
在python安装路径下的site-packages添加一个路径文件,如tensorflow_model.pth,必须以.pth为后缀,写上你要加入的模块文件所在的目录名称,如下图:
以防万一,你也可以把official路径加上。
如果用的anaconda或者miniconda,那么要在Anaconda\Lib\site-packages或者miniconda\Lib\site-packages下添加路径文件。
4、切换到models/research路径,进行编译和安装
cmd中切换到models/research下,先后输入以下命令进行编译和安装:
python setup.py build
python setup.py install
编译和安装后,再输入以下命令进行测试:
python object_detection/builders/model_builder_test.py
出现以下信息表示测试通过,安装成功!