tensorflow models安装记录

本文详细介绍了如何安装TensorFlow的扩展模块models,包括下载源码、安装protoc、编译proto文件、添加环境变量及编译安装过程。适用于希望利用TensorFlow预训练模型的研究人员和开发者。
摘要由CSDN通过智能技术生成


tensorflow自1.0版本起,models就被单独拿出来作为一个独立模块。tensorflow的github库中存在两个部分,tensorflow是我们常用的框架源码部分,而models则是其扩展模块部分,需要单独进行安装。models模块收集了研究者们提出的很多优秀的网络模型,包括但不限于计算机视觉方向、自然语言处理方向和强化学习方向等。

1、下载models源码

GitHub地址:https://github.com/tensorflow/models
Gitee地址:https://gitee.com/sunmingyang1987/tensorflow-object-detection-api/tree/master
从以上两个地址下载的是最新的,如果你的tensorflow是1.x那么需要下载历史版本,建议tensorflow1.14.0对应安装models1.13.0,不会出现莫名其妙的报错。

2、下载、安装protoc,并进行编译

2.1 下载、安装protoc

GitHub地址:https://github.com/protocolbuffers/protobuf/releases
挑选适合自己的版本下载。
百度云盘链接:https://pan.baidu.com/s/17V_Ol61YQqCkePPZVJjF9Q
提取码:5lo2
下载后复制到与models同名的文件夹下,解压,生成:bin、include。将bin文件夹下的protoc.exe复制到C:\Windows\System32文件夹下。cmd打开命令行界面,输入命令protoc,出现如下界面说明安装成功:
在这里插入图片描述

2.2 编译proto文件

在models/research下运行Windows PowerShell(注意,这里必须是PowerShell,运行cmd会报错),输入如下命令:

Get-ChildItem object_detection/protos/*.proto | Resolve-Path -Relative | %{ protoc $_ --python_out=. }

运行完成后,可以检查object_detection/protos/文件夹,如果每个proto文件都成了对应的以py为后缀的python源码,就说明编译成功了。
在这里插入图片描述

3、添加环境变量

在python安装路径下的site-packages添加一个路径文件,如tensorflow_model.pth,必须以.pth为后缀,写上你要加入的模块文件所在的目录名称,如下图:
在这里插入图片描述
以防万一,你也可以把official路径加上。
如果用的anaconda或者miniconda,那么要在Anaconda\Lib\site-packages或者miniconda\Lib\site-packages下添加路径文件。

4、切换到models/research路径,进行编译和安装

cmd中切换到models/research下,先后输入以下命令进行编译和安装:

python setup.py build

python setup.py install

编译和安装后,再输入以下命令进行测试:

python object_detection/builders/model_builder_test.py

出现以下信息表示测试通过,安装成功!
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值