10、从内窥镜图像中检测胃息肉的图像检查系统

从内窥镜图像中检测胃息肉的图像检查系统

在当今医疗领域,疾病的准确检测和分析至关重要。随着疾病发生率的上升,基于计算机的诊断系统在医院中得到了广泛应用,用于对患者病情进行术前和术后分析。这些诊断系统大多作为辅助设备,为医生提供患者健康状况的初步信息,医生还会进行常规检查以确定治疗方案。

医疗诊断现状与需求

在医院里,检测体内或体外器官疾病的常用方法包括经验丰富医生的亲自检查、通过电极收集生物信号以及利用合适的成像技术收集生物图像。早期研究表明,与个人检查和基于生物信号的方法相比,合适的生物成像技术能更有效地验证内部器官的疾病。而且,由于有多种成像技术和评估软件可供使用,生物图像辅助评估技术在医疗诊所中得到了广泛采用,它能为待治疗的疾病提供重要的初步意见。

医疗成像支持多种模式,有助于准确呈现待检查内部器官的二维和三维视图。这些医学图像可以由经验丰富的医生或专门的计算机程序进行系统检查,以识别疾病的部位、类别和严重程度。鉴于其临床重要性,已经讨论并实现了多种半自动和自动疾病检查方法来评估医学图像。

胃息肉检测的重要性与挑战

胃息肉(Gastric Polyps,GP)如果不及时治疗,可能会导致胃癌。临床上常用的检测和确认胃息肉严重程度的方法包括:一是通过内窥镜辅助识别和评估胃壁内的异常细胞生长(胃息肉);二是进行活检以确认收集的细胞是否癌变。通常,内窥镜技术会将胃息肉记录为数字图片,医生可以对这些图片进行初步评估,将胃息肉分为腺瘤性或非腺瘤性类别,之后再通过活检进一步确认。

然而,评估胃息肉图片是一项复杂的任务。由于其复杂性和RGB(红、蓝、绿)通道直方图的特点,以及胃息肉和胃壁颜色在大多数情况下相似,使得从胃壁中分离

内容概要:本文围绕“基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度”展开,提出了一种综合考虑低碳运行与能源高效利用的优化调度模型。该模型融合了电转气(P2G)与碳捕集、封存(CCS)技术,并引入燃气掺氢手段,提升清洁能源消纳能力与系统灵活性,同时结合阶梯碳交易机制,激励虚拟电厂降低碳排放。通过Matlab代码实现仿真分析,验证了所提模型在降低运行成本、提高可再生能源利用率和减少碳排放方面的有效性。研究为新型电力系统下虚拟电厂的低碳化、智能化调度提供了理论支持和技术路径。; 适合人群基于阶梯碳交易的含 P2G-CCS 耦合和燃气掺氢的虚拟电厂优化调度(Matlab代码实现):具备一定电力系统、能源优化或运筹学背景的研究生、科研人员及从事新能源、智能电网相关工作的工程技术人员。; 使用场景及目标:①研究虚拟电厂在碳交易机制下的优化调度策略;②探索P2G-CCS与燃气掺氢技术在能源系统中的集成应用;③学习Matlab在电力系统优化建模与求解中的实际应用;④复现并改进相关科研成果用于学术研究或项目开发。; 阅读建议:建议结合文中模型构建逻辑与Matlab代码同步阅读,重点关注目标函数设计、约束条件设定及求解流程,可借助提供的网盘资源获取完整代码与案例数据以便深入理解和实验验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值