卡特兰数
题目描述
这里有一个经典的组合计数问题(这是2009年全国高中数学联赛河北省预赛试题):
10 10 10个人去买票,其中 5 5 5个人每人只有五元纸币一张,另外 5 5 5个人每人只有十元纸币一张。
售票处初始的时候没有任何零钱。
如果只关心每个人的持有的纸币面值(例如,持有五元纸币的人视作相同的),那么这些人有几种来买票的先后顺序,使售票处总能顺利找零。
这个问题与“从正方网格中,从左下角走最短路到右上角,但不穿越图中对角线”的走法数完全等价。
因为可以认为一次向右对应一个五元的人买票,一次向上对应一个十元的人买票,则“不超过对角线”等价于“任何时刻向右次数不少于向上次数”等价于“任何时刻五元人数不少于十元人数”等价于“总能顺利找零”。
买票问题的答案为“卡特兰数” C 5 = 42 C_5=42 C5=42。上图走格子方法数则为“卡特兰数” C 4 = 14 C_4=14 C4=14。实际上,若持有五元、十元纸币的各有 n n n人,或正方形边长为 n n n,则方法数为“卡特兰数” C n C_n Cn。
“卡特兰数”是组合计数问题中较为高级,但十分常用的一个数列,一般用 C 0 , C 1 , ⋯ , C n , ⋯ C_0,C_1,\cdots,C_n,\cdots C0,C1,⋯,Cn,⋯表示,其中
C n = 1 ( n = 0 ) C_n=1\quad (n=0) Cn=1(n=0)
C n = C 0 × C n − 1 + C 1 × C n − 2 + ⋯ + C n − 1 × C 0 ( n > 0 ) C_{n}=C_0\times C_{n-1}+C_1\times C_{n-2}+\cdots +C_{n-1}\times C_0 \quad (n>0) Cn=C0×Cn−1+C1×Cn−2+⋯+Cn−1×C0(n>0)
本题中,通过 n n n,请计算得到 C n C_n Cn并输出。
输入格式
一个整数 n n n。
输出格式
一行,一个数,即卡特兰数 C n C_n Cn。
保证这个数可以用long long
类型存储。
样例 #1
样例输入 #1
10
样例输出 #1
16796
提示
0 ≤ n ≤ 25 0\le n \le 25 0≤n≤25。
答案
#include<bits/stdc++.h>
using namespace std;
int main(){
long long n,C[10001],ans;
cin >> n;
C[0]=1;
C[1]=1;
for(int i=2;i<=n;i++){
for(int j=0;j<=i-1;j++){
C[i] += C[j] * C[i-j-1];
}
}
cout << C[n];
return 0;
}