卡特兰数及其应用

本文介绍了卡特兰数在组合数学中的应用,特别是在解决栈的出栈序列问题上的使用。通过递推公式和通项求解,阐述了卡特兰数的概念,并列举了括号化问题、出栈次序问题、多边形划分等应用场景。此外,还提供了相关的C++实现代码。
摘要由CSDN通过智能技术生成

一道栈的题目

最近做一道有关栈的题目,题目是这样的:

      若一序列进栈顺序为e1,e2,e3,e4,e5,问存在多少种可能的出栈序列?

      这道题用递推可以算出来,假设第k个数进栈,设f(k)表示k个数的总出栈序列数,则它前面的k-1个数有f(k-1)种出栈序列,它后面有f(5-k)种出栈序列,由乘法原理,这时有f(k-1)*f(5-k)种。由于k取不同值的情况是相互独立的,所以由加法原理,总共有f(5)=f(0)*f(4)+f(1)*f(3)+f(2)*f(2)+f(3)*f(1)+f(4)*f(0)种。让f(0)=1,f(1)=1。最后算出答案42。     

于是问题可以推广为:

       一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?

在网上查了一下答案才发现这个问题在组合数学中是非常有名的卡特兰数,于是就学习了一下相关的知识。

卡特兰数

维基百科的定义:

卡塔兰数组合数学中一个常出现在各种计数问题中出现的数列。由以比利时的数学家

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值