机器学习实战-决策树

本文介绍了决策树的基本概念,包括其优缺点和构造流程。通过计算信息增益来选择最佳划分特征,用于构建决策树。文章还讨论了如何在Python中实现熵计算和数据集划分,以及构造决策树的递归过程。最后,总结了决策树在分类问题中的作用,强调了它们在理解和处理数据内在含义方面的优势。
摘要由CSDN通过智能技术生成

机器学习实战-决策树

一、决策树简介

  • k-近邻算法可以完成很多分类任务,但是它最大的缺点就是无法给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解。

下面是决策树的一般形式:

决策树可以使用不熟悉的数据集合, 并从中提取出一系列规则,机器学习算法最终将使用这些机器从数据集中创造的规则。

决策树:

  • 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。
  • 缺点:可能会产生过度匹配问题。
  • 适用数据类型:数值型和标称型。

二、构造决策树

在构造决策树时,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。为了找到决定性的特征,划分出最好的结果,我们必须评估每个特征。

创建分支的伪代码函数createBranch如下所示:

检测数据集中的每个子项是否属于同一分类:
    If so return 类标签;
    Else
        寻找划分数据集的最好特征
        划分数据集
        创建分支节点
            for每个划分的子集
                调用函数createBranch并增加返回结果到分支节点中
        return 分支节点

上面的伪代码createBranch是一个递归函数,在倒数第二行直接调用了它自己。后面我们
将把上面的伪代码转换为python代码,这里我们需要进一步了解算法是如何划分数据集的.

决策树的一般流程

  1. 收集数据:可以使用任何方法。

  2. 准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。

  3. 分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期。

  4. 训练算法:构造树的数据结构。

  5. 测试算法:使用经验树计算错误率。

  6. 使用算法:此步骤可以适用于任何监督学习算法,而使用决策树可以更好地理解数据
    的内在含义。

信息増益

划分数据集的大原则是:将无序的数据变得更加有序。我们可以使用多种方法划分数据集,
但是每种方法都有各自的优缺点。组织杂乱无章数据的一种方法就是使用信息论度量信息, 信息论是量化处理信息的分支科学。我们可以在划分数据之前使用信息论量化度量信息的内容。

在划分数据集之前之后信息发

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值