论文笔记
文章平均质量分 95
All in .
这个作者很懒,什么都没留下…
展开
-
BIBM2019_Fine-tuning BERT for Joint Entity and Relation Extraction in Chinese Medical Text
本文针对实体关系联合抽取任务,提出了一种聚焦注意力模型。该模型通过动态范围注意机制将BERT语言模型集成到联合学习中,从而提高了共享参数层的特征表示能力。原创 2021-12-23 16:55:03 · 1139 阅读 · 0 评论 -
ACL2021_Learning from Miscellaneous Other-Class Words for Few-shot Named Entity Recognition
Learning from Miscellaneous Other-Class Words for Few-shot Named Entity Recognition知识准备摘要介绍相关工作原型网络方法符号标记Undefined Classes DetectionStep 1: Mapping Function LearningStep 2: Binary Group Classifier TrainingStep 3: Binary Group Classifier InferenceJoint Clas原创 2021-10-09 20:03:17 · 587 阅读 · 0 评论 -
ACL2021_Enhancing Entity Boundary Detection for Better Chinese Named Entity Recognition
Enhancing Entity Boundary Detection for Better Chinese Named Entity Recognition摘要介绍相关工作模型TokenEmbeddingToken EmbeddingTokenEmbedding 层基于Star−TransformerStar-TransformerStar−Transformer上下文嵌入层Multi-Head AttentionStar−TransformerStar-TransformerStar−Transform原创 2021-09-11 15:10:49 · 1741 阅读 · 1 评论 -
CCKS2020 任务三:面向中文电子病历的医疗实体及事件抽取
提示:任务三包含两个子任务,本文主要关注第二个子任务面想中文电子病历的医疗事件抽取任务介绍一、pandas是什么?二、使用步骤1.引入库2.读入数据总结任务介绍医疗事件抽取: 本任务为中文病历医疗事件抽取任务,即给定主实体为肿瘤的电子病历文本数据,定义肿瘤事件的若干属性,如肿瘤大小,肿瘤原发部位等,识别并抽取事件及属性,进行文本结构化。 本任务提供少量标注数据、大量非标注数据集及词表,旨在训练数据有限的情况下,利用非标注文本和半监督等方法提升模型性能。更接近真实世界的场景。事件模板定义:原创 2021-09-04 08:09:52 · 5164 阅读 · 5 评论 -
ACL2021_ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information
ChineseBERT:利用字形和拼音信息加强中文预训练摘要介绍二、使用步骤1.引入库2.读入数据总结论文.摘要目前的中文预训练模型忽略了汉字特有的两个重要方面:字形和拼音,它们为语言理解提供了重要的句法和语义信息。文章提出了ChineseBERT,它将汉字的字形和拼音信息结合到预训练语言模型中。字形嵌入基于汉字的不同字体,能够从视觉特征中捕捉汉字的语义,拼音嵌入刻画了汉字的读音,处理了汉语中普遍存在的异义词现象(同音异义)。在大规模未标注中文语料库上进行了预训练,该模型以较少的训练步骤获得了比原创 2021-08-17 08:45:46 · 1558 阅读 · 0 评论 -
ACL2021_Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter
文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as npimport原创 2021-07-22 14:28:34 · 2359 阅读 · 1 评论 -
CIKM2020_Exploiting Class Labels to Boost Performance on Embedding-based Text Classification
利用标签与样本之间的统计信息改善文本分类中的embedding表示摘要介绍相关工作TF-CR加权方案TF-CR在嵌入中的应用实验数据集Word Embedding Models & Classifiers加权方案使用TF-CR调整文本表示不同大小的训练集结果结论摘要文本分类是处理文本数据最常见的任务之一,有助于从大规模数据集中进行其他研究。近年来,不同类型的嵌入特征已成为文本分类的事实标准。这些嵌套有能力捕捉从大型外部集合中的事件推断出的单词的含义。虽然它们是建立在外部集合之上的,但它们不知原创 2021-07-08 01:49:42 · 419 阅读 · 0 评论 -
AAAI2019_A Hierarchical Multi-task Approach for Learning Embeddings from Semantic Tasks
文章目录摘要介绍模型Words embeddingsNER实体提及检测(EMD)共指消解(CR)关系抽取 (RE)实验设置数据集和评估指标论文摘要为了评估是否可以利用多任务学习来学习可用于各种自然语言处理(NLP)下游应用的丰富表示,已经投入了大量的工作。然而,目前仍缺乏对多任务学习产生显著影响的背景的了解。在这一工作中,我们引入了一个分层模型,该模型在一组精心选择的语义任务上进行多任务学习。通过监督模型底层的一组低级任务和顶层的一组较复杂的任务,以分层的方式进行训练,引入归纳偏差。该模型在许原创 2021-07-07 16:34:21 · 873 阅读 · 0 评论 -
EMNLP2020_切断前后的边:事件时序关系神经结构
Severing the Edge Between Before and After:Neural Architectures for Temporal Ordering of Events摘要一、pandas是什么?二、使用步骤1.引入库2.读入数据总结摘要在本文中,我们提出了一种神经结构和一套通过预测时间关系来对事件进行排序的训练方法。我们提出的模型接收文本范围内的一对事件作为输入,并识别它们之间的时间关系(之前、之后、相等、V)。鉴于这项任务的一个关键挑战是标注数据的稀缺,我们的模型要么依赖于预原创 2021-06-06 21:42:26 · 711 阅读 · 0 评论 -
TimeML: Robust Specification of Event and Temporal Expressions in Text
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档TimeML: Robust Specification of Event and Temporal Expressions in Text1. TimeML 简介2. TimeML 标注规则及示例3. TimeML 的发展总结论文1. TimeML 简介TimeML规范,是在自然语言文本中表示事件和时间表达式的一种规范语言,是为了提升自然语言问答系统的处理性能而提出的,现已成为事件时间表达式的一种ISO标准规范。TimeML是在原创 2021-04-20 12:56:22 · 1016 阅读 · 0 评论 -
ACL2019_Extracting Multiple-Relations in One-Pass with Pre-Trained Transformers
Extracting Multiple-Relations in One-Pass with Pre-Trained Transformers摘要1.介绍2.背景3. 提出的方法3.1 基于Bert的MRE结构化预测3.2 基于相对距离的entity-aware Self-Attention4. 实验4.1 设置4.2 ACE 2005 实验结果4.3 SemEval 2018 Task7 实验结果4.2 其他SRE结果5. 总结论文摘要从输入段落中提取多个实体关系的最新解决方案总是需要对输入进行原创 2021-04-17 21:59:16 · 567 阅读 · 0 评论 -
BioNLP2020_A BERT-based One-Pass Multi-Task Model for Clinical Temporal Relation Extraction
A BERT-based One-Pass Multi-Task Model for Clinical Temporal Relation Extraction摘要一、介绍二、方法1.双任务2.基于窗口的token序列处理3.实验3.1 数据和设置3.2 在THYME上的结果3.3 计算效率4. 讨论论文摘要最近,BERT在从临床电子病历文本中提取时间关系方面取得了最先进的性能。然而,当前的方法效率很低,因为它需要对每个输入序列进行多次传递。本文将最近提出的用于关系分类的one-pass模型扩展为用原创 2021-04-17 19:20:01 · 873 阅读 · 0 评论 -
Joint Event and Temporal Relation Extraction with Shared Representations and Structured Prediction
EMNLP_2019 Joint Event and Temporal Relation Extraction with Shared Representations and Structured Prediction摘要介绍相关工作联合事件抽取模型neural SSVMSSVM的损失函数为:MAP(最大后验概率)推断约束条件实施细节数据集Baselines端到端事件时序关系提取实验实验结果消融实验总结论文摘要这篇文章主要是解决“事件-事件联合抽取”问题。与已有工作相比,本文提出的方法有两个优点:原创 2021-03-26 19:03:08 · 623 阅读 · 0 评论 -
IEEE2019_A Survey of Event Extraction from Text
A Survey of Event Extraction from TextAbstractⅠ. IntroductionA. PUBLIC EVALUATION PROGRAMSB.SUMMARY OF THIS SURVEYⅡ. EVENT EXTRACTION TASKSA. CLOSED-DOMAIN EVENT EXTRACTIONB. OPEN-DOMAIN EVENT EXTRACTIONⅢ. EVENT EXTRACTION CORPUSA. ACE事件语料库B. THE TAC-KBP C原创 2021-03-24 21:28:56 · 2340 阅读 · 0 评论 -
2020_Joint Entity and Relation Extraction with Set Prediction Networks
Joint Entity and Relation Extraction with Set Prediction NetworksAbstractIntroductionMethodSentence EncoderNon-Autoregressive Decoder for Triple Set GenerationInput.Architecture.Bipartite Matching LossExperimentsConclusion论文Abstract联合实体和关系抽取任务的目标是从一个句子原创 2021-03-06 21:09:49 · 1453 阅读 · 5 评论 -
ACL2020_A Novel Cascade Binary Tagging Framework for Relational Triple Extraction
A Novel Cascade Binary Tagging Framework for Relational Triple ExtractionAbstractIntroductionThe CASREL Framework1.BERT Encoder2.Cascade DecoderSubject TaggerRelation-specific Object TaggersExperiments论文Abstract1从非结构化文本中提取关系三元组是构建大规模知识图的关键。然而,在解决同一句子中的多原创 2021-03-05 12:17:56 · 753 阅读 · 0 评论 -
BioNLP2020_Global Locality in Biomedical Relation and Event Extraction
Global Locality in Biomedical Relation and Event ExtractionAbstractIntroductionDataModelInputMulti-head AttentionConvolutionsClassificationExperiments and ResultsConvolutionsClassificationAnalysisAblation StudyParameter AnalysisAnalysis on Overlapping Case原创 2021-02-05 23:43:35 · 1092 阅读 · 0 评论 -
IJCAI 2020_A Relation-Specific Attention Network for Joint Entity and Relation Extraction
IJCAI 2020_A Relation-Specific Attention Network for Joint Entity and Relation ExtractionAbstractIntroductionProblem FormulationTrigger Matching NetworksTrigger Encoding & Semantic MatchingTrigger-Enhanced Sequence TaggingInference on Unlabeled Sentenc原创 2021-02-01 21:48:49 · 2523 阅读 · 10 评论 -
ACL2020_TriggerNER: Learning with Entity Triggers as Explanations for Named Entity Recognition
ACL2020_TriggerNER: Learning with Entity Triggers as Explanations for Named Entity RecognitionAbstractIntroductionAbstract在新领域中训练命名实体识别(NER)的神经模型通常需要额外的人工标注,收集这些标注通常非常昂贵和耗时。因此,如何以低成本的方式获得监督是一个重要的研究问题。在这篇文章中提出了“Trigger entity”以促进NER模型的标签有效学习。实体触发器定义为句子中的一原创 2021-01-31 19:20:27 · 360 阅读 · 0 评论 -
ACL2020_Improving Low-Resource Named Entity Recognition using Joint Sentence and Token Labeling
ACL2020_Improving Low-Resource Named Entity Recognition using Joint Sentence and Token LabelingAbstractIntroductionJoint learning framework for multi-class classificationShared layersSentence classificationNERRevisiting attention mechanismsExperimentsDatas原创 2021-01-21 19:44:35 · 588 阅读 · 0 评论