You are given n rods of length 1, 2…, n. You have to pick any 3 of them & build a triangle. How many distinct triangles can you make? Note that, two triangles will be considered different if they have at least 1 pair of arms with different length.
Input
The input for each case will have only a single positive integer n (3<=n<=1000000). The end of input will be indicated by a case with n<3. This case should not be processed.
Output
For each test case, print the number of distinct triangles you can make.
Sample Input
5
8
0
Output for Sample Input
3
22
题目大意:有多少种方法可以从1,2,3,…..,n中选出3个不同的整数,使得以它们为三边长可以组成三角形(输入包含多组数据);
题解:
枚举肯定会超时,那么只能进行一些数学分析了
设最大的边长为x,其余两边分别为y,z;根据三角形两边之和大于第三边有y+z>x,所以z的取值范围为x-y
#include<iostream>
using namespace std;
long long f[10000001],n;
int main()
{
f[3]=0;
for (long long i=4;i<=1000000;i++)
f[i]=f[i-1]+(((i-1)*(i-2))/2-(i-1)/2)/2;
while(cin>>n)
{
if (n<3) break;
cout<<f[n]<<endl;
}
}