Marshellian demand and the solution problem of maximizing Utility.

Marshellian demand and the solution problem of maximizing Utility.

Model construction- Maximizing the UTILITY

B B B is the feasible set as it indicates that the expenditure not exceed income:
B = { x ∣ x ∈ R + n , p ⋅ x ≤ y } B=\{\mathbf{x}|\mathbf{x}\in\mathbb{R}_+^n,\mathbf{p}\cdot\mathbf{x}\leq y\} B={xxR+n,pxy}
As in a considerable size market, the prizes or goods are settle down and the disturb of a single consumer to it is too small to change it, so the change of the demand of goods depends on the change of the income( y y y) and the solution to the problem of maximizing consumer’s utility.

And the problem of maximizing utility within the feasible set is supposed to be like:
max ⁡ x ∈ R + n u ( x ) s.t. p ⋅ x ≤ y \max_{\mathbf{x}\in\mathbb{R}_+^n}u(\mathbf{x})\quad \text{s.t.}\quad \mathbf{p}\cdot\mathbf{x}\leq y xR+nmaxu(x)s.t.pxy

Solve the problem- Example- Marshellian demand

Utility function(Direct) with a constant elasticity of substitution(CES):
max ⁡ x ∈ R + n u ( x ) = ( x 1 ρ + x 2 ρ ) 1 / ρ s.t. p ⋅ x = p 1 x 1 + p 2 x 2 ≤ y \max_{\mathbf{x}\in\mathbb{R}_+^n}u(\mathbf{x})=(x_1^\rho+x_2^\rho)^{1/\rho}\quad \text{s.t.}\quad \mathbf{p}\cdot\mathbf{x}=p_1x_1+p_2x_2\leq y xR+nmaxu(x)=(x1ρ+x2ρ)1/ρs.t.px=p1x1+p2x2y
Lagrange method is used here to solve the equation:
L ( x 1 , x 2 , λ ) ≡ ( x 1 ρ + x 2 ρ ) 1 / ρ + λ ( y − p 1 x 1 − p 2 x 2 ) L(x_1,x_2,\lambda)\equiv(x_1^\rho+x_2^\rho)^{1/\rho}+\lambda(y-p_1x_1-p_2x_2) L(x1,x2,λ)(x1ρ+x2ρ)1/ρ+λ(yp1x1p2x2)
Considering the first-order derivative of the lagrange function equal to 0 0 0, we obtain:
{ ∂ L ∂ x 1 = ( x 1 ρ + x 2 ρ ) ( 1 / ρ ) − 1 x 1 ρ − 1 − λ p 1 = 0 ( 5 a ) ∂ L ∂ x 2 = ( x 1 ρ + x 2 ρ ) ( 1 / ρ ) − 1 x 2 ρ − 1 − λ p 2 = 0 ( 5 b ) ∂ L ∂ λ = y − p 1 x 1 − p 2 x 2 = 0 ( 5 c ) \begin{aligned} \left\{ \begin{array}{rcl} & \frac{\partial L}{\partial x_1}=(x_1^\rho+x_2^\rho)^{(1/\rho)-1}x_1^{\rho-1}-\lambda p_1=0 & (5a)\\ & \frac{\partial L}{\partial x_2}=(x_1^\rho+x_2^\rho)^{(1/\rho)-1}x_2^{\rho-1}-\lambda p_2=0 & (5b)\\ & \frac{\partial L}{\partial \lambda}=y-p_1x_1-p_2x_2=0& (5c) \end{array} \right. \end{aligned} x1L=(x1ρ+x2ρ)(1/ρ)1x1ρ1λp1=0x2L=(x1ρ+x2ρ)(1/ρ)1x2ρ1λp2=0λL=yp1x1p2x2=0(5a)(5b)(5c)
Combine equation (5a) with (5b), we get x 1 ρ − 1 x 2 ρ − 1 = p 1 p 2 = x 1 x 2 ρ − 1 \large\frac{x_1^{\rho-1}}{x_2^{\rho-1}}=\frac{p_1}{p_2}=\frac{x_1}{x_2}^{\rho-1} x2ρ1x1ρ1=p2p1=x2x1ρ1 , that’s the relation between x 1 , x 2 x_1,x_2 x1,x2, then we just put it to the equation (5c) and get the solution of x 1 , x 2 x_1,x_2 x1,x2 as follows:
{ x 1 = x 1 ( p , y ) = p 1 1 / ρ − 1 y p 1 ( ρ / ρ − 1 ) + p 2 ρ / ( ρ − 1 ) x 2 = x 2 ( p , y ) = p 2 1 / ρ − 1 y p 1 ( ρ / ρ − 1 ) + p 2 ρ / ( ρ − 1 ) \large\left\{\begin{array}{rcl} x_1=x_1(\mathbf{p},y)=\frac{p_1^{1/\rho-1}y}{p_1^{(\rho/\rho-1)}+p_2^{\rho/(\rho-1)}}\\ x_2=x_2(\mathbf{p},y)=\frac{p_2^{1/\rho-1}y}{p_1^{(\rho/\rho-1)}+p_2^{\rho/(\rho-1)}} \end{array} \right. x1=x1(p,y)=p1(ρ/ρ1)+p2ρ/(ρ1)p11/ρ1yx2=x2(p,y)=p1(ρ/ρ1)+p2ρ/(ρ1)p21/ρ1y
Set the other prices and the income constant, then we get the relation between the demand and price of a goods x 1 x_1 x1, that is the Marshellian demand of goods.

Indirect utility function

The reason why the direct utility function is direct lies on its illustration of the relation between values of utility and the amounts x \mathbf{x} x. The equation contains directly the amounts of goods x = [ x 1 , . . . , x n ] \mathbf{x}=[x_1,...,x_n] x=[x1,...,xn].

For an indirect utility function, we substitute x i = x i ( p , y ) x_i=x_i(\mathbf{p},y) xi=xi(p,y) for the direct expression of x i x_i xi and the equation then contains < p , y > <\mathbf{p},y> <p,y>, and that is why the transformed equation is called indirect.

So the variables for an indirect utility function are p \mathbf{p} p and y y y, we use υ ( p , y ) \upsilon(\mathbf{p},y) υ(p,y) to carry the expression:
υ ( p , y ) = [ ( x 1 ( p , y ) ) ρ + ( x 2 ( p , y ) ) ρ ] 1 / ρ \large\upsilon(\mathbf{p},y)=[(x_1(\mathbf{p},y))^\rho+(x_2(\mathbf{p},y))^\rho]^{1/\rho} υ(p,y)=[(x1(p,y))ρ+(x2(p,y))ρ]1/ρ
Simplify the expression by introducing r = ρ / ( ρ − 1 ) r=\rho/(\rho-1) r=ρ/(ρ1):
υ ( p , y ) = y ( p 1 r + p 2 r ) − 1 / r \large\upsilon(\mathbf{p},y)=y(p_1^r+p_2^r)^{-1/r} υ(p,y)=y(p1r+p2r)1/r

The Roy’s Identity

The indirect utility function has stated the relation between utility and < p , y > <\mathbf{p},y> <p,y>, thus we have got two dimensions from where we can look into the change of the utility.

The function υ ( p , y ) \upsilon(\mathbf{p},y) υ(p,y) has two variables which meets y = p ⋅ x y=\mathbf{p}\cdot\mathbf{x} y=px.

The partial differential of υ ( p , y ) \upsilon(\mathbf{p},y) υ(p,y) over y y y, ∂ υ ∂ y \large\frac{\partial \upsilon}{\partial y} yυ, indicates the increment of the utility considering the change of income y y y.

Substitute y y y for p x \mathbf{p}\mathbf{x} px, the partial differential could be written as:
∂ υ ( p , y ) ∂ ( p x ) \frac{\partial \upsilon(\mathbf{p},y)}{\partial(\mathbf{px})} (px)υ(p,y)
Considering the inverse effect of changing p \mathbf{p} p and y y y on utility, we have:
∂ υ ( p , y ) ∂ ( p x ) = − ∂ υ ( p , y ) ∂ ( y ) \frac{\partial \upsilon(\mathbf{p},y)}{\partial(\mathbf{px})}=-\frac{\partial \upsilon(\mathbf{p},y)}{\partial(\mathbf{y})} (px)υ(p,y)=(y)υ(p,y)
that is:
∂ υ ( p , y ) ∂ ( p ) = − x ∂ υ ( p , y ) ∂ ( y ) \frac{\partial \upsilon(\mathbf{p},y)}{\partial(\mathbf{p})}=-\mathbf{x}\frac{\partial \upsilon(\mathbf{p},y)}{\partial(\mathbf{y})} (p)υ(p,y)=x(y)υ(p,y)
set the prices and amounts of goods other than x i x_i xi constant, we rewrite the equation as follows:
∂ υ ( p , y ) ∂ ( p i ) = − x i ∂ υ ( p , y ) ∂ ( y ) \frac{\partial \upsilon(\mathbf{p},y)}{\partial(\mathbf{p_i})}=-\mathbf{x_i}\frac{\partial \upsilon(\mathbf{p},y)}{\partial(\mathbf{y})} (pi)υ(p,y)=xi(y)υ(p,y)
That is the Roy’s Identity and the other form is:
x i = − ∂ υ ( p , y ) / ∂ ( p i ) ∂ υ ( p , y ) / ∂ ( y ) \mathbf{x_i} =-\frac{{\partial \upsilon(\mathbf{p},y)}/{\partial(\mathbf{p_i})}}{{\partial \upsilon(\mathbf{p},y)}/{\partial(\mathbf{y})}} xi=υ(p,y)/(y)υ(p,y)/(pi)
which also illustrates how we get Marshellian demand from the indirect utility function.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值