隐语实训05-基于隐私保护的机器学习算法介绍

指南参考链接:https://www.secretflow.org.cn/zh-CN/docs/secretflow/v1.6.1b0/user_guide

1、预处理和隐私求交

1.1 预处理

隐语支持两种数据表结构:DataFrame和FedNdarray。

  • DataFrame是联邦表格数据的封装,由多个参与方的数据块构成,支持数据水平、垂直切分和混合切分,
    • 水平:特征一致,但参与方各自有各自的样本,对应API:HDataFrame
    • 垂直:参与方的样本是对齐的,但样本特征不同,对应API:VDataFrame
    • 混合切分:既有水平又有垂直的切分模式。对应API:MixDataFrame。
    • 在这里插入图片描述- FedNdarray是联邦ndarray的封装,同样由多个参与方的数据块构成,每一方的数据使用numpy darray来表示,支持水平和垂直切分,对应统一的API:FedNdarray。

DataFrame 和 FedNdarray 各自提供了一些读写 api 可供直接使用。
隐语也提供多种预处理工具来处理这些数据,可以直接使用 DataFrame API 处理数据,或者使用
sf.preprocessing 包内的各类预处理组件处理。

下面跑个WOE编码的示例,DataFrame暂时没运行结束,待运行结束后再补充。

WOE编码

WOE分箱实现了针对二元目标变量的数值变量的分箱。

代码链接参考:https://www.secretflow.org.cn/zh-CN/docs/secretflow/v1.6.1b0/user_guide/preprocessing/WeightOfEvidenceEncoding
在这里插入图片描述结果和官方一致

1.2 隐私求交PSI

隐私求交(Private Set Intersection)是一种使用密码学方法,获取两份数据内容的交集的算法。 PSI过程中不泄露任务交集以外的信息 。

在垂直拆分场景中,隐私求交常用于第一步的数据对齐,然后可以进一步做数据分析或机器学习建模。
在隐语中 PSI 有两种使用方式:

  1. 使用spu.psi_csv等接口

    _,alice_psi path =tempfile.mkstemp()
    _,bob_psi_path =tempfile.mkstemp()
    spu.psi_csv(
    	key="uid",
    	input_path={alice:alice_ path, bob: bob _path},
    	output path={alice:alice_psi path,bob: bob_psi_path},
    	receiver="alice",
    	protocol="ECDH_PSI_2PC",
    	sort=True,
    )
    
  2. 使用data.vertical.read_csv接口

    from secretflow.data.vertical import read csv as v read csv
    vdf =vread csv(
    	{alice:alice path,bob: bob path},
    	spu=spu,
    	keys="uid",
    	drop _keys="uid",
    	psi_protocl="ECDH PSI 2PC",
    )
    vdf.columns
    

    同时隐语支持多种 PSI 算法,可根据参与方数量、带宽、算力、数据不平衡度等不同场景合理选择。

2、决策树模型和线性回归模型

2.1 决策树

隐语目前支持多种决策树算法(XGB),同时支持回归和二分类训练,不同算法的安全性也不同,可根据自己实际场景和安全性需求来选用,大致分为三类:

算法SS-XGBSecureBoost水平XGBoost
APIsecretflow.ml.boost.ss_xgb_v.Xgbsecretflow.ml.boost.sgb_v.Sgbsecretflow.ml.boost.homo_boost.SFXgboost
场景垂直切分垂直切分水平切分
安全性可证安全,安全性依赖使用的秘密分享协议安全性非可证安全,存在可能导致数据泄露的已知攻击非可证安全性,
性能通信成本更高计算量更大,但通信量更小

下面跑一个决策树简单的模型,使用secretflow进行垂直联邦学习。在此垂直模式下,垂直划分设定为:

  • 所有数据方的样本一致

  • 但是拥有样本的不同特征

  • 只有一方持有标签

    这里alice和bob分别拿到前10个特征和后10个特征,分配的特征数量越多,训练效果越好,我这里只分配了10个。并且数据标签只分配给Alice。8:2划分数据集,其他的就和机器学习模型训练评估类似,设置不同的超参。最后计算评估指标并打印。

import sys
import time
import logging

import secretflow as sf
from secretflow.ml.boost.ss_xgb_v import Xgb
from secretflow.device.driver import wait, reveal
from secretflow.data import FedNdarray, PartitionWay
from secretflow.data.split import train_test_split
import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.metrics import accuracy_score, classification_report


# init log
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# init all nodes in local Standalone Mode.
sf.init(['alice', 'bob'], address='local')

# init PYU, the Python Processing Unit, process plaintext in each node.
alice = sf.PYU('alice')
bob = sf.PYU('bob')

# init SPU, the Secure Processing Unit,
#           process ciphertext under the protection of a multi-party secure computing protocol
spu = sf.SPU(sf.utils.testing.cluster_def(['alice', 'bob']))

# read data in each party
def read_x(start, end):
    from sklearn.datasets import load_breast_cancer
    x = load_breast_cancer()['data']
    return x[:, start:end]

def read_y():
    from sklearn.datasets import load_breast_cancer
    return load_breast_cancer()['target']

# alice / bob / carol each hold one third of the features of the data
v_data = FedNdarray(
    partitions={
        alice: alice(read_x)(0, 10),
        bob: bob(read_x)(10, 20),
    },
    partition_way=PartitionWay.VERTICAL,
)
# Y label belongs to alice
label_data = FedNdarray(
    partitions={alice: alice(read_y)()},
    partition_way=PartitionWay.VERTICAL,
)
# wait IO finished
wait([p.data for p in v_data.partitions.values()])
wait([p.data for p in label_data.partitions.values()])
# split train data and test date
random_state = 1234
split_factor = 0.8
v_train_data, v_test_data = train_test_split(v_data, train_size=split_factor, random_state=random_state)
v_train_label, v_test_label= train_test_split(label_data, train_size=split_factor, random_state=random_state)
# run SS-XGB
xgb = Xgb(spu)
start = time.time()
params = {
    # for more detail, see Xgb API doc
    'num_boost_round': 5,
    'max_depth': 5,
    'learning_rate': 0.1,
    'sketch_eps': 0.08,
    'objective': 'logistic',
    'reg_lambda': 0.1,
    'subsample': 1,
    'colsample_by_tree': 1,
    'base_score': 0.5,
}
model = xgb.train(params, v_train_data,v_train_label)
logging.info(f"train time: {time.time() - start}")

# Do predict
start = time.time()
# Now the result is saved in the spu by ciphertext
spu_yhat = model.predict(v_test_data)
# reveal for auc, acc and classification report test.
yhat = reveal(spu_yhat)
logging.info(f"predict time: {time.time() - start}")
y = reveal(v_test_label.partitions[alice])
# get the area under curve(auc) score of classification
logging.info(f"auc: {roc_auc_score(y, yhat)}")
binary_class_results = np.where(yhat>0.5, 1, 0)
# get the accuracy score of classification
logging.info(f"acc: {accuracy_score(y, binary_class_results)}")
# get the report of classification
print("classification report:")
print(classification_report(y, binary_class_results))

在这里插入图片描述#### 2.2 线性回归模型

隐语支持多种线性回归模型

算法SS-SGDHESS-SGDSS-GLM混合联邦LR
APIsecretflow.ml.linear.SSRegressionsecretflow.ml.linear.HESSLogisticRegressionsecretflow.ml.linear.SSGLMsecretflow.ml.linear.FlLogisticRegressionMix
场景垂直垂直垂直混合切分(2+n)
安全性可证安全,安全性依赖于使用的秘密分享协议可证安全,安全性依赖于使用的秘密分享协议和同态加密算法可证安全,安全性依赖于使用的秘密分享协议非可证安全,泄露了部分中间信息
算法线性回归、逻辑回归逻辑回归广义线性回归逻辑回归
性能通行量更大,大带宽(万兆/局域网)下速度更快计算量更大,网络受限(带宽延迟)的情况下速度更快————

同样,再跑一个SSRegression的。

import sys
import time
import logging

import numpy as np
import spu
import secretflow as sf
from secretflow.data.split import train_test_split
from secretflow.device.driver import wait, reveal
from secretflow.data import FedNdarray, PartitionWay
from secretflow.ml.linear.ss_sgd import SSRegression

from sklearn.metrics import roc_auc_score, accuracy_score, classification_report

# init log
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# init all nodes in local Standalone Mode.
sf.init(['alice', 'bob'], address='local')

# init PYU, the Python Processing Unit, process plaintext in each node.
alice = sf.PYU('alice')
bob = sf.PYU('bob')

# init SPU, the Secure Processing Unit,
#           process ciphertext under the protection of a multi-party secure computing protocol
spu = sf.SPU(sf.utils.testing.cluster_def(['alice', 'bob']))

# read data in each party
def read_x(start, end):
# use breast_cancer as example
    from sklearn.datasets import load_breast_cancer
    from sklearn.preprocessing import StandardScaler
    x = load_breast_cancer()['data']
    # LR's train dataset must be standardized or normalized
    scaler = StandardScaler()
    x = scaler.fit_transform(x)
    return x[:, start:end]

def read_y():
    from sklearn.datasets import load_breast_cancer
    return load_breast_cancer()['target']

# alice / bob / carol each hold one third of the features of the data
# read_x is execute locally on each node.
v_data = FedNdarray(
    partitions={
        alice: alice(read_x)(0, 15),
        bob: bob(read_x)(15, 30),
    },
    partition_way=PartitionWay.VERTICAL,
)
# Y label belongs to alice
label_data = FedNdarray(
    partitions={alice: alice(read_y)()},
    partition_way=PartitionWay.VERTICAL,
)

# wait IO finished
wait([p.data for p in v_data.partitions.values()])
wait([p.data for p in label_data.partitions.values()])
# split train data and test date
random_state = 1234
split_factor = 0.8
v_train_data, v_test_data = train_test_split(v_data, train_size=split_factor, random_state=random_state)
v_train_label, v_test_label = train_test_split(label_data, train_size=split_factor, random_state=random_state)
# run SS-SGD
# SSRegression use spu to fit model.
model = SSRegression(spu)
start = time.time()
model.fit(
    v_train_data,      # x
    v_train_label,  # y
    5,           # epochs
    0.3,         # learning_rate
    32,          # batch_size
    't1',        # sig_type
    'logistic',  # reg_type
    'l2',        # penalty
    0.1,         # l2_norm
)
logging.info(f"train time: {time.time() - start}")

# Do predict
start = time.time()
# Now the result is saved in the spu by ciphertext
spu_yhat = model.predict(v_test_data)
# reveal for auc, acc and classification report test.
yhat = reveal(spu_yhat)
logging.info(f"predict time: {time.time() - start}")
y = reveal(v_test_label.partitions[alice])
# get the area under curve(auc) score of classification
logging.info(f"auc: {roc_auc_score(y, yhat)}")
binary_class_results = np.where(yhat > 0.5, 1, 0)
# get the accuracy score of classification
logging.info(f"acc: {accuracy_score(y, binary_class_results)}")
# get the report of classification
print("classification report:")
print(classification_report(y, binary_class_results))

在这里插入图片描述### 3、神经网络算法

神经网络这里主要是联邦学习,分为水平联邦学习和垂直拆分学习,分别提供了两套API(FLModel、SLModel),需要注意的是,这里的两种联邦学习都属于非可证安全算法,安全性要根据其实际场景具体分析。
在这里插入图片描述这里跑一个水平联邦图像分类的示例,其实就是参与者不断从服务器下载新模型在本地利用本地数据训练后,将超参加密传给服务器,服务器将加密的参数进行安全聚合,然后更新服务器的模型,再将新模型返回给参与者不断去训练修正反馈。
在这里插入图片描述参照官方使用minist数据集,链接为https://www.secretflow.org.cn/zh-CN/docs/secretflow/v1.3.0b0/tutorial/Federate_Learning_for_Image_Classification
在这里插入图片描述
在这里插入图片描述多方参与比单方参与准确率高了近2个百分点

  • 7
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值