py-faster-rcnn源码解读系列(二)——pascal_voc.py

本文详细解读py-faster-rcnn库中pascal_voc类的源码,涵盖初始化、图像路径获取、数据加载和测试等功能,重点关注gt_roidb、selective_search_roidb等关键方法。
摘要由CSDN通过智能技术生成

该部分代码功能在于实现了一个pascol _voc的类,该类继承自imdb,用于负责数据交互部分。

初始化函数

在初始化自身的同时,先调用了父类的初始化方法,将imdb _name传入,例如(‘voc _2007 _trainval’)
下面是成员变量的初始化:
{
    year:’2007’
    image _set:’trainval’
    devkit _path:’data/VOCdevkit2007’
    data _path:’data /VOCdevkit2007/VOC2007’
    classes:(…)_如果想要训练自己的数据,需要修改这里_
    class _to _ind:{…} _一个将类名转换成下标的字典 _
    image _ext:’.jpg’
    image _index: [‘000001’,’000003’,……]_根据trainval.txt获取到的image索引_
    roidb _handler: <Method gt_roidb >
    salt:  <Object uuid >
    comp _id:’comp4’
    config:{…}
} 
  class pascal _voc(imdb):
  def __init__(self, image_set, year, devkit_path=None):
      imdb.__init__(self, 'voc_' + year + '_' + image_set)
      self._year = year
      self._image_set = image_set
      self._devkit_path = self._get_default_path() if devkit_path is None  
                          else devkit_path
      self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year)
      self._classes = ('__background__', # always index 0
                       'aeroplane', 'bicycle', 'bird', 'boat',
                       'bottle', 'bus', 'car', 'cat', 'chair',
                       'cow', 'diningtable', 'dog', 'horse',
                       'motorbike', 'person', 'pottedplant',
                       'sheep', 'sofa', 'train', 'tvmonitor')
      self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
      self._image_ext = '.jpg'
      self._image_index = self._load_image_set_index()
      # Default to roidb handler
      self._roidb_handler = self.selective_search_roidb
      self._salt = str(uuid.uuid4())
      self._comp_id = 'comp4'

      # PASCAL specific config options
      self.config = {
  'cleanup'     : True,
                     'use_salt'    : True,
                     'use_diff'    : False,
                     'matlab_eval' : 
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值