组合数学学习笔记

组合数学学习笔记

——by sunzz3183


组合

定义

n n n 个元素中选 m m m 个元素的所有情况数(无顺序),记为

C n m C_{n}^{m} Cnm

公式

C n m = n ! m ! ( n − m ) ! C_{n}^{m}=\frac{n!}{m!(n-m)!} Cnm=m!(nm)!n!

代码

  1. 直接求
inline int ksm(int a,int b){int t=1;for(;b;b>>=1,a=a*a%p)if(b&1)t=t*a%p;return t%p;}
inline int C(int n,int m){
	if(n<m)return 0;
	if(m>n-m)m=n-m;
	int a=1,b=1;
	for(int i=1;i<=m;i++)
		a=a*(n-i+1)%p,b=b*i%p;
	return a*ksm(b,p-2)%p;
}
  1. 预处理阶乘求
int fac[N],inv[N];
inline int ksm(int a,int b){int t=1;for(;b;b>>=1,a=a*a%mod)if(b&1)t=t*a%mod;return t%mod;}
void init(int n){
	fac[0]=inv[0]=1;
	for(int i=1;i<=n;i++)
		fac[i]=fac[i-1]*i%mod;
	inv[n]=ksm(fac[n],mod-2);
	for(int i=n;i>=1;i--)
		inv[i-1]=inv[i]*i%mod;
}
inline int C(int n,int m){
	if(n<m)return 0;
	return fac[n]*inv[m]%mod*inv[n-m]%mod;
}

拓展

因为

C n m = C n n − m C_{n}^m=C_{n}^{n-m} Cnm=Cnnm

所以

C n m = C n − 1 m − 1 + C n − 1 m C_n^m=C_{n-1}^{m-1}+C_{n-1}^{m} Cnm=Cn1m1+Cn1m

万用表

可以找到大部分组合数的规律

QQ截图20230218140945.png

其中第 n n n m m m 列为 C n + m m C_{n+m}^m Cn+mm C n + m n C_{n+m}^n Cn+mn

排列

n n n 个元素中选 m m m 个元素的排列的所有情况数(有顺序),记为

P n m P_{n}^{m} Pnm

公式

P n m = n ! ( n − m ) ! P_{n}^{m}=\frac{n!}{(n-m)!} Pnm=(nm)!n!

Lucas定理

C n m m o d    p = C n / p m / p × C n   m o d   p m   m o d   p m o d    p C_n^m \mod p=C_{n/p}^{m/p} \times C_{n\bmod p}^{m\bmod p}\mod p Cnmmodp=Cn/pm/p×Cnmodpmmodpmodp

代码

inline int Lucas(int n,int m){return m?Lucas(n/p,m/p)*C(n%p,m%p)%p:1;}

卡特兰(Catalan)数

意义

( 0 , 0 ) (0,0) (0,0)越过直线 y = x y=x y=x ,走到 ( n , n ) (n,n) (n,n) 的方案个数。

式子

h ( n ) h(n) h(n) 为卡特兰数的第 n n n 项。

h ( 0 ) = 1 , h ( 1 ) = 1 h(0)=1,h(1)=1 h(0)=1,h(1)=1,卡特兰数满足递推式

h ( n ) = h ( 0 ) × h ( n − 1 ) + h ( 1 ) × h ( n − 2 ) + . . . + h ( n − 1 ) × h ( 0 ) ( n ≥ 2 ) h(n)= h(0)\times h(n-1)+h(1)\times h(n-2) + ... + h(n-1)\times h(0) (n≥2) h(n)=h(0)×h(n1)+h(1)×h(n2)+...+h(n1)×h(0)(n2)

另类递推式:

h ( n ) = h ( n − 1 ) × ( 4 × n − 2 ) / ( n + 1 ) h(n)=h(n-1)\times (4\times n-2)/(n+1) h(n)=h(n1)×(4×n2)/(n+1)

h ( n + 1 ) = h ( n ) × ( 4 × n + 2 ) / ( n + 2 ) h(n+1)=h(n)\times (4\times n + 2) / (n + 2) h(n+1)=h(n)×(4×n+2)/(n+2)

非递推:

h ( n ) = C 2 n n − C 2 n n − 1 = C 2 n n n + 1 = ( 2 n ) ! n ! ( n + 1 ) ! h(n)=C_{2n}^n-C_{2n}^{n-1}=\frac{C_{2n}^n}{n+1}=\frac{(2n)!}{n!(n+1)!} h(n)=C2nnC2nn1=n+1C2nn=n!(n+1)!(2n)!

拓展

在求一些走到 ( n , m ) (n,m) (n,m) 的时候

f ( n , m ) = C n + m n − C n + m m − 1 = C n + m n × ( n − m + 1 ) n + 1 = ( n + m ) ! × ( n − m + 1 ) m ! ( n + 1 ) ! f(n,m)=C_{n+m}^n-C_{n+m}^{m-1}=\frac{C_{n+m}^n\times (n-m+1)}{n+1}=\frac{(n+m)!\times (n-m+1)}{m!(n+1)!} f(n,m)=Cn+mnCn+mm1=n+1Cn+mn×(nm+1)=m!(n+1)!(n+m)!×(nm+1)

多重集组合数

例题Devu and Flowers

描述

给定 n ( 1 ≤ n ≤ 20 ) n(1\leq n \leq 20) n(1n20) 个数,每个数最多选 a i ( 1 ≤ a i ≤ 1 0 12 ) a_i(1\leq a_i \leq 10^{12}) ai(1ai1012),一共选 m ( 1 ≤ m ≤ 1 0 14 ) m(1\leq m \leq 10^{14}) m(1m1014) 个数,问方案数。

分析

显然,当 a i ≥ m a_i\geq m aim 时,答案为

C n + m − 1 n − 1 C_{n+m-1}^{n-1} Cn+m1n1

那么如果不满足这种情况呢?

设第 i i i 个数字为 b i b_i bi,此题可以转化为,从可重集

S = { b 1 ⋅ a 1 , b 2 ⋅ a 2 , ⋯   , b n ⋅ a n } S=\left \{ b_1\cdot a_1,b_2\cdot a_2,\cdots ,b_n\cdot a_n \right \} S={b1a1,b2a2,,bnan}

m m m 个数的方案数。

根据容斥可得:

C n + m − 1 n − 1 − ∑ i = 1 n C n + m − a i − 2 n − 1 + ∑ i = 1 n ∑ j = i + 1 n C n + m − a i − a j − 3 n − 1 − ⋯ + ( − 1 ) n C n + m − ∑ i = 1 n a i − n − 1 n − 1 C_{n+m-1}^{n-1}-\sum\limits_{i=1}^n C_{n+m-a_i-2}^{n-1}+\sum\limits_{i=1}^n \sum\limits_{j=i+1}^n C_{n+m-a_i-a_j-3}^{n-1}-\cdots +(-1)^n C_{n+m-\sum\limits_{i=1}^na_i-n-1}^{n-1} Cn+m1n1i=1nCn+mai2n1+i=1nj=i+1nCn+maiaj3n1+(1)nCn+mi=1nain1n1

实现时通过枚举二进制 0 ∼ 2 n − 1 0\sim 2^n-1 02n1 来加减。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值