0/1分数规划学习笔记

0/1分数规划学习笔记

——by sunzz3183


介绍

0 / 1 0/1 0/1 分数规划是指,给定整数 a 1 , a 2 , ⋯   , a n , b 1 , b 2 , ⋯   , b n a_1,a_2,\cdots ,a_n,b_1,b_2,\cdots ,b_n a1,a2,,an,b1,b2,,bn,求一组解 $x_i,x_i \in \left { 0,1 \right } $,使下面的式子最大化:

∑ i = 1 n a i × x i ∑ i = 1 n b i × x i \frac{\sum_{i=1}^{n} a_i\times x_i}{\sum_{i=1}^{n} b_i\times x_i} i=1nbi×xii=1nai×xi

求法

我们设一个值 L L L,假设存在一组解使得:

∑ i = 1 n a i × x i ∑ i = 1 n b i × x i ≥ L \frac{\sum_{i=1}^{n} a_i\times x_i}{\sum_{i=1}^{n} b_i\times x_i} \geq L i=1nbi×xii=1nai×xiL

那么此时显然,最大值大于 L L L

又因为

∑ i = 1 n a i × x i ∑ i = 1 n b i × x i ≥ L ∑ i = 1 n a i × x i ≥ L × ∑ i = 1 n b i × x i ∑ i = 1 n a i × x i − L × ∑ i = 1 n b i × x i ≥ 0 ∑ i = 1 n ( a i − L × b i ) × x i ≥ 0 \begin{aligned} \frac{\sum_{i=1}^{n} a_i\times x_i}{\sum_{i=1}^{n} b_i\times x_i} &\geq L\\ \sum_{i=1}^{n} a_i\times x_i&\geq L\times \sum_{i=1}^{n} b_i\times x_i\\ \sum_{i=1}^{n} a_i\times x_i-L\times \sum_{i=1}^{n} b_i\times x_i&\geq 0\\ \sum_{i=1}^{n} (a_i-L\times b_i)\times x_i&\geq 0 \end{aligned} i=1nbi×xii=1nai×xii=1nai×xii=1nai×xiL×i=1nbi×xii=1n(aiL×bi)×xiLL×i=1nbi×xi00

所以,

假设存在一组解使得:

∑ i = 1 n ( a i − L × b i ) × x i ≥ 0 \sum_{i=1}^{n} (a_i-L\times b_i)\times x_i\geq 0 i=1n(aiL×bi)×xi0

那么此时最大值大于等于 L L L

同理

假设任意一组解使得:

∑ i = 1 n ( a i − L × b i ) × x i < 0 \sum_{i=1}^{n} (a_i-L\times b_i)\times x_i<0 i=1n(aiL×bi)×xi<0

那么此时最大值小于 L L L

又显然, L L L 在取值时,解的存在满足单调性,所以显然可以二分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值