使用Python识别滑块验证码中的缺口位置

这篇文章讲解了如何使用Python识别滑块验证码中的缺口位置。滑块验证码是一种常见的验证码形式,它通过要求用户拖动一个滑块来验证用户的真实性。而识别滑块验证码中的缺口位置是破解滑块验证码的一种常见方式。

Python中的图像处理库cv2可以用于识别缺口位置。该过程主要分为三个步骤:读取图片、识别图片边缘和缺口匹配。首先使用imread函数读取背景图片和缺口图片,然后使用Canny函数识别出图片的边缘。接着,将图片格式转换为RGB格式,并使用matchTemplate函数在背景图片中搜索对应的缺口。最后,选出其中“概率最高”的点,即为缺口匹配的位置。缺口的X轴坐标就是匹配结果中“概率最高”的点的X坐标。

Ps:动手能力弱的小伙伴可以直接访问www.ttocr.com我的网站来进行识别

为了更好地展示缺口的位置,可以将缺口用矩形框标注出来。完整代码如下:

import cv2

def identify_gap(bg, tp, out):

    # 读取背景图片和缺口图片

    bg_img = cv2.imread(bg) # 背景图片

    tp_img = cv2.imread(tp) # 缺口图片

    # 识别图片边缘

    bg_edge = cv2.Canny(bg_img, 100, 200)

    tp_edge = cv2.Canny(tp_img, 100, 200)

    # 转换图片格式

    bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)

    tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)

    # 缺口匹配

    res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)

    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) # 寻找最优匹配

    X = max_loc[0] # 缺口的X轴坐标

    # 绘制方框

    th, tw = tp_pic.shape[:2]

    tl = max_loc # 左上角点的坐标

    br = (tl[0]+tw,tl[1]+th) # 右下角点的坐标

    cv2.rectangle(bg_img, tl, br, (0, 0, 255), 2) # 绘制矩形

    cv2.imwrite(out, bg_img) # 保存在本地

identify_gap('bg.jpg', 'tp.png', 'out.jpg')

def identify_gap(bg_path, tp_path, out_path):

    # 读取两个图像

    bg = cv2.imread(bg_path)

    tp = cv2.imread(tp_path)

    # 将两个图像转换为灰度图像

    bg_gray = cv2.cvtColor(bg, cv2.COLOR_BGR2GRAY)

    tp_gray = cv2.cvtColor(tp, cv2.COLOR_BGR2GRAY)

    # 计算两个图像之间的差异

    diff = cv2.absdiff(bg_gray, tp_gray)

    # 应用阈值来获得二进制图像

    thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]

    # 找到轮廓

    contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # 将轮廓绘制到原始图像上

    for c in contours:

        (x, y, w, h) = cv2.boundingRect(c)

        cv2.rectangle(bg, (x, y), (x + w, y + h), (0, 255, 0), 2)

    # 保存结果

cv2.imwrite(out_path, bg)

这个函数会读取背景和前景图像,将它们转换为灰度图像并计算它们之间的差异。它还会应用阈值来获得二进制图像,然后查找轮廓,并在原始图像上绘制它们。最后,它会将结果保存到输出文件中。

请确保已安装 OpenCV 库,否则可以使用以下命令在终端中安装它:

pip install opencv-python

安装完成后,你可以在 Python 中导入 OpenCV 库来使用它。

如果上述代码遇到问题或已更新无法使用等情况可以联系Q:1436423940或直接访问www.ttocr.com测试对接(免费得哈)
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值