知识图谱—知识融合

知识融合

1引言

通过知识提取,实现了从非结构化和半结构化数据中获取实体、关系以及实体属性信息的目标。但是由于知识来源广泛,存在知识质量良莠不齐、来自不同数据源的知识重复、层次结构缺失等问题,所以必须要进行知识的融合。知识融合是高层次的知识组织,使来自不同知识源的知识在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等步骤,达到数据、信息、方法、经验以及人的思想的融合,形成高质量的知识库。

2 实体对齐

实体对齐 (entity alignment) 也称为实体匹配 (entity matching)或实体解析(entity resolution)或者实体链接(entity linking),主要是用于消除异构数据中实体冲突、指向不明等不一致性问题,可以从顶层创建一个大规模的统一知识库,从而帮助机器理解多源异质的数据,形成高质量的知识。

在大数据的环境下,受知识库规模的影响,在进行知识库实体对齐时,主要会面临以下3个方面的挑战:1) 计算复杂度。匹配算法的计算复杂度会随知识库的规模呈二次增长,难以接受;2) 数据质量。由于不同知识库的构建目的与方式有所不同,可能存在知识质量良莠不齐、相似重复数据、孤立数据、数据时间粒度不一致等问题;3) 先验训练数据。在大规模知识库中想要获得这种先验数据却非常困难。通常情况下,需要研究者手工构造先验训练数据。

基于上述,知识库实体对齐的主要流程将包括:1) 将待对齐数据进行分区索引,以降低计算的复杂度;2) 利用相似度函数或相似性算法查找匹配实例;3) 使用实体对齐算法进行实例融合;4) 将步骤2)与步骤3)的结果结合起来,形成最终的对齐结果。对齐算法可分为成对实体对齐与集体实体对齐两大类,而集体实体对齐又可分为局部集体实体对齐与全局集体实体对齐。

1)成对实体对齐方法

① 基于传统概率模型的实体对齐方法

基于传统概率模型的实体对齐方法主要就是考虑两个实体各自属性的相似性,而并不考虑实体间的关系。将基于属性相似度评分来判断实体是否匹配的问题转化为一个分类问题,建立了该问题的概率模型,缺点是没有体现重要属性对于实体相似度的影响。基于概率实体链接模型,为每个匹配的属性对分配了不同的权重,匹配准确度有所提高。还结合贝叶斯网络对属性的相关性进行建模,并使用最大似然估计方法对模型中的参数进行估计。

② 基于机器学习的实体对齐方法

基于机器学习的实体对齐方法主要是将实体对齐问题转化为二分类问题。根据是否使用标注数据可分为有监督学习与无监督学习两类,基于监督学习的实体对齐方法主要可分为成对实体对齐、基于聚类的对齐、主动学习。

通过属性比较向量来判断实体对匹配与否可称为成对实体对齐。这类方法中的典型代表有决策树、支持向量机、集成学习等。使用分类回归树、线性分析判别等方法完成了实体辨析。基于二阶段实体链接分析模型,提出了一种新的SVM分类方法,匹配准确率远高于TAILOR中的混合算法。

基于聚类的实体对齐算法,其主要思想是将相似的实体尽量聚集到一起,再进行实体对齐。提出了一种扩展性较强的自适应实体名称匹配与聚类算法,可通过训练样本生成一个自适应的距离函数。采用类似的方法,在条件随机场实体对齐模型中使用监督学习的方法训练产生距离函数,然后调整权重,使特征函数与学习参数的积最大。

在主动学习中,可通过与人员的不断交互来解决很难获得足够的训练数据问题,构建的ALIAS系统可通过人机交互的方式完成实体链接与去重的任务。采用相似的方法构建了ActiveAtlas系统。

2)局部集体实体对齐方法

局部集体实体对齐方法为实体本身的属性以及与它有关联的实体的属性分别设置不同的权重,并通过加权求和计算总体的相似度,还可使用向量空间模型以及余弦相似性来判别大规模知识库中的实体的相似程度,算法为每个实体建立了名称向量与虚拟文档向量,名称向量用于标识实体的属性,虚拟文档向量则用于表示实体的属性值以及其邻居节点的属性值的加权和值。为了评价向量中每个分量的重要性,算法主要使用TF-IDF为每个分量设置权重,并为分量向量建立倒排索引,最后选择余弦相似性函数计算它们的相似程度。该算法的召回率较高,执行速度快,但准确率不足。其根本原因在于没有真正从语义方面进行考虑。

3)全局集体实体对齐方法

① 基于相似性传播的集体实体对齐方法

基于相似性传播的方法是一种典型的集体实体对齐方法,匹配的两个实体与它们产生直接关联的其他实体也会具有较高的相似性,而这种相似性又会影响关联的其他实体。

相似性传播集体实体对齐方法最早来源于文献提出的集合关系聚类算法,该算法主要通过一种改进的层次凝聚算法迭代产生匹配对象。在以上算法的基础上提出了适用于大规模知识库实体对齐的算法SiGMa,该算法将实体对齐问题看成是一个全局匹配评分目标函数的优化问题进行建模,属于二次分配问题,可通过贪婪优化算法求得其近似解。SiGMa方法能够综合考虑实体对的属性与关系,通过集体实体的领域,不断迭代发现所有的匹配对。

② 基于概率模型的集体实体对齐方法基于概率模型的集体实体对齐方法主要采用统计关系学习进行计算与推理,常用的方法有LDA模型、CRF模型、Markov逻辑网等。

将LDA模型应用于实体的解析过程中,通过其中的隐含变量获取实体之间的关系。但在大规模的数据集上效果一般。提出了一种基于图划分技术的CRF实体辨析模型,该模型以观察值为条件产生实体判别的决策,有利于处理属性间具有依赖关系的数据。在CRF实体辨析模型的基础上提出了一种基于条件随机场模型的多关系的实体链接算法,引入了基于canopy的索引,提高了大规模知识库环境下的集体实体对齐效率。提出了一种基于Markov逻辑网的实体解析方法。通过Markov逻辑网,可构建一个Markov网,将概率图模型中的最大可能性计算问题转化为典型的最大化加权可满足性问题,但基于Markov网进行实体辨析时,需要定义一系列的等价谓词公理,通过它们完成知识库的集体实体对齐。

知识加工

通过实体对齐,可以得到一系列的基本事实表达或初步的本体雏形,然而事实并不等于知识,它只是知识的基本单位。要形成高质量的知识,还需要经过知识加工的过程,从层次上形成一个大规模的知识体系,统一对知识进行管理。知识加工主要包括本体构建与质量评估两方面的内容。

1)本体构建

本体是同一领域内不同主体之间进行交流、连通的语义基础,其主要呈现树状结构,相邻的层次节点或概念之间具有严格的“IsA”关系,有利于进行约束、推理等,却不利于表达概念的多样性。本体在知识图谱中的地位相当于知识库的模具,通过本体库而形成的知识库不仅层次结构较强,并且冗余程度较小。

 

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
转自CCF:https://dl.ccf.org.cn/lecture/lectureDetail?id=4663480272078848。 张勇,剑桥大学博士后。 摘要:健康医疗大数据是健康医疗活动的产物,同时也是进行健康医疗业务优化和辅助决策的基础。健康医疗大数据分散在多个主体管理的多个系统中,所以在应用健康医疗大数据的时候往往需要先进行数据釉合。然而由于生成数据的系统所采用的标准或规范不同,不同来源的数据之间经常存在数据不一致的情况,同时由于应用水平等问题,数据的质量也存在较大问题。数据不一 致和数据质量等问题大大阻碍了数据融合的效率和效果。知识图谱作为作为一种灵活的数据模型,通过一张图来集成所有相关的数据,同时利用对齐等技术来解决数据中存在的问题。本报告将从健康医疗大数据融合的数据模型、过程、工具和应用的角度来介绍如何应用知识图谱来进行健康医疗大数据融合。我们把健康医疗知识图谱分为概念图谱和实例图谱,定义了各 自的数据模型,然后分别介绍了各自的建立过程,以及两者之间如何建立关联。我们提出了“ 医在回路 ”的概念,对医生在构建健康领域知识图谱中的角色和职责进行了定义。基于这些数据模型,我们研发了健康知识图谱构建工具 HKGB 。该工具是一个易于扩展的、跨语言的、智能的知识图谱构建平台。基于该平台,我们构建了面向心血管疾病的知识图谱。最后本报告介绍了健康医疗知识图谱的应用情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值