BM43包含min的函数栈

该文章介绍了一个C++实现的栈类,其中包含push、pop、top和min等方法。push和pop操作维护了两个栈,s1用于常规栈操作,s2则保持当前栈中的最小值。在push时,如果新值小于s2的顶部值,s2也会存储新值,确保能快速获取最小值。pop操作则同时从两个栈中弹出元素。
摘要由CSDN通过智能技术生成

包含min函数的栈_牛客题霸_牛客网 (nowcoder.com)

 

class Solution {
  public:
    //用于栈的push 与 pop
    stack<int> s1;
    //用于存储最小min
    stack<int> s2;

    void push(int value) {
        s1.push(value);
        if (s2.empty() || s2.top() > value)
            s2.push(value);
        else
            s2.push(s2.top());
    }
    void pop() {
        s1.pop();
        s2.pop();
    }
    int top() {
        return s1.top();
    }
    int min() {
        return s2.top();
    }
};

在OpenCV中,可以使用Block Matching(BM)算法来获取视差图。BM算法是一种基于区块匹配的立体匹配算法,它通过将左右图像的对应区域进行匹配,计算出每个像素点的视差值。 以下是使用BM算法获取视差图的示例代码: ```python import cv2 # 读取左右视图图像 left_img = cv2.imread('left_image.jpg', 0) right_img = cv2.imread('right_image.jpg', 0) # 创建BM算法对象 bm = cv2.StereoBM_create(numDisparities=16, blockSize=15) # 计算视差图 disparity = bm.compute(left_img, right_img) # 可选:对视差图进行归一化处理 disparity_normalized = cv2.normalize(disparity, disparity, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U) # 显示视差图 cv2.imshow('Disparity Map', disparity_normalized) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在示例代码中,首先通过`cv2.imread()`函数读取左右视图的图像。然后使用`cv2.StereoBM_create()`函数创建BM算法对象,可以通过调整`numDisparities`和`blockSize`参数来调节算法的精度和计算速度。接下来,调用`bm.compute()`函数计算视差图。最后,可以使用`cv2.normalize()`函数对视差图进行归一化处理,并使用`cv2.imshow()`函数显示视差图。 请注意,BM算法是一种简单且常用的立体匹配算法,但在某些情况下可能存在一些局限性。在实际应用中,你可能需要考虑其他更复杂的立体匹配算法,如Semi-Global Block Matching(SGBM)或Graph Cuts等,以获得更好的视差图质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值