【已解决】huggingface 模型下载到服务器方法

【已解决】huggingface 模型下载到服务器方法

说明:这里 huggingface 指的是其 镜像网站

方法一:手动下载

首先定位到镜像网站上的模型主页,将下图中所有文件(若不知道哪些文件有用)下载到本地
在这里插入图片描述

下载到本地

方法①:浏览器下载

网络信息:手机wifi(移动5G)
下载器信息:edge浏览器直接点击下载
下载的文件信息:stabilityai/stable-video-diffusion-img2vid-xt 模型中的 svd_xt_image_decoder.safetensors (9.5GB)
在这里插入图片描述以下是对比校园网wifi(20M)的速度:
在这里插入图片描述

方法②:IDM下载

网络信息:手机wifi(移动5G)
下载器信息:IDM(点击学习使用IDM)
下载的文件信息:stabilityai/stable-video-diffusion-img2vid-xt 模型中的 svd_xt_image_decoder.safetensors (9.5GB)
在这里插入图片描述以下是对比校园网wifi(20M)的速度:
在这里插入图片描述

上传到服务器

基于方法,搭配手机wifi,速度会更快。

方法二:使用huggingface官方指令下载

参考官方文档

下载模型
从HuggingFace上获取到所需模型名,例如 lmsys/vicuna-7b-v1.5

python hf_download.py --model lmsys/vicuna-7b-v1.5 --save_dir ./hf_hub

注意事项:

(1)脚本内置通过 pip 自动安装 huggingface-cli 和 hf_transfer。如果 hf_transfer 版本低于 0.1.4 则不会显示下载进度条,可以手动更新:

pip install -U hf-transfer -i https://pypi.tuna.tsinghua.edu.cn/simple

如出现 huggingface-cli: error 问题,尝试重新安装:

pip install -U huggingface_hub -i https://pypi.tuna.tsinghua.edu.cn/simple

如出现关于 hf_transfer的报错,可以通过--use_hf_transfer False参数关闭 hf_transfer。
(2)若指定了 save_dir,下载过程中会将文件先暂存在 transformers 的默认路径~/.cache/huggingface/hub中,下载完成后自动移动到--save_dir指定目录下,因此需要在下载前保证默认路径下有足够容量。

<think>嗯,用户想找Hugging Face模型下载服务器地址或相关信息。首先,我需要回想一下Hugging Face的模型下载方式。记得官方主服务器是https://huggingface.co,但有时候用户可能因为网络问题无法直接访问。 然后,用户可能不知道镜像网站的存在,比如hf-mirror.com,这个镜像可以帮助加速下载。需要把原来的链接中的huggingface.co替换成hf-mirror.com,然后用wget或者浏览器下载。比如模型页面是https://huggingface.co/Qwen/Qwen-VL-Chat-Int4,替换后的下载链接就是https://hf-mirror.com/Qwen/Qwen-VL-Chat-Int4。下载具体文件的时候,要进入文件页面复制真实的下载链接,避免下载到HTML文件。 另外,用户可能对编程方法更感兴趣,比如使用huggingface_hub库的snapshot_download函数,或者直接从本地加载模型。比如使用from_pretrained方法指定本地路径,这样可以避免每次下载。需要提醒用户正确设置local_dir参数,或者使用环境变量HF_HOME来指定缓存目录。 还有,用户可能遇到下载大文件的问题,比如需要断点续传或者多线程下载。这时候推荐用wget或专门的下载工具,或者huggingface_hub的snapshot_download设置参数。另外,下载模型需要足够的存储空间,检查磁盘空间也是必要的。 总结下来,用户可能需要的不仅仅是服务器地址,还包括各种下载方法和可能遇到的问题的解决方案。要分点回答,结构清晰,确保用户能一步步操作。同时注意引用之前提供的参考资料里的方法,比如镜像网站和snapshot下载,这样回答更有依据。</think>关于Hugging Face模型下载服务器地址及下载方法,以下是关键信息总结: ### 一、官方服务器地址 1. **主服务器地址** Hugging Face官方模型仓库地址为: $$https://huggingface.co/[model\_id]$$ 例如Qwen-VL-Chat-Int4模型的页面地址是: `https://huggingface.co/Qwen/Qwen-VL-Chat-Int4` 2. **文件直链格式** 具体文件的下载地址格式为: $$https://huggingface.co/[model\_id]/resolve/[commit\_hash]/[filename]$$ 例如: `https://huggingface.co/Qwen/Qwen-VL-Chat-Int4/resolve/main/model.safetensors` ### 二、替代下载方法 #### 1. 镜像服务器加速 - **镜像地址替换规则** 将原地址中的`huggingface.co`替换为`hf-mirror.com`,例如: `https://hf-mirror.com/Qwen/Qwen-VL-Chat-Int4`[^2] - **操作步骤** ```bash wget https://hf-mirror.com/Qwen/Qwen-VL-Chat-Int4/resolve/main/model.safetensors ``` #### 2. 编程接口下载 - **使用`huggingface_hub`库** ```python from huggingface_hub import snapshot_download snapshot_download( repo_id="Qwen/Qwen-VL-Chat-Int4", local_dir="./models/Qwen-VL-Chat-Int4" ) ``` 此方法会自动解析模型文件地址并完成下载 #### 3. 本地加载已下载模型 ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("./models/Qwen-VL-Chat-Int4") ``` 通过指定本地路径跳过服务器下载[^1] ### 三、注意事项 1. **文件选择技巧** 避免直接复制页面链接,需进入具体文件页面获取真实下载地址,否则可能下载到无效的HTML文件 2. **存储路径配置** 可通过设置环境变量指定缓存目录: ```bash export HF_HOME=/path/to/custom_cache ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值