在信号处理领域,压缩感知(Compressed Sensing)是一种能够从远少于传统奈奎斯特采样定理所要求的样本数目中重建稀疏信号的技术。压缩感知的理论基础在于一个前提假设,即许多自然信号都含有稀疏的表示,换句话说,这些信号可以用很少的非零系数表达。在这个框架下,贪婪算法,如匹配追踪(Matching Pursuit, MP)和正交匹配追踪(Orthogonal Matching Pursuit, OMP),提供了有效的求解方法。
匹配追踪(MP)算法
可以将MP算法比喻为从一堆不同币值的硬币中挑选出一些来凑出总金额369元的过程。MP算法的工作原理是迭代选择与当前残差相关性最强的字典元素(即币值),然后更新残差(即剩余需要凑出的金额)。
正交匹配追踪(OMP)算法
OMP算法在MP的基础上增加了一个正交化步骤,这意味着在每次迭代中,它不仅选择一个与残差相关性最强的字典元素,而且还考虑已经选取的字典元素,确保新选择的元素与已选择的元素正交。这就如同在凑金额的过程中,确保不会重复考虑同一币值的硬币。
贪婪算法在压缩感知中的应用
假设你站在一家糖果店前,店主提出一个有趣的挑战&#