MCP入门
文章平均质量分 92
superdont
电子工业出版社优秀作者,代表作《OpenCV轻松入门》(累计印刷超过20次),《计算机视觉40例》等。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【翻译论文】Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions
模型上下文协议(MCP)是一种标准化接口,旨在实现 AI 模型与外部工具和资源之间的无缝交互,打破数据孤岛并促进跨不同系统的互操作性。本文全面概述了 MCP,重点关注其核心组件、工作流程以及 MCP 服务器的生命周期,该生命周期包括三个关键阶段:创建、运行和更新。我们分析了与每个阶段相关的安全和隐私风险,并提出了缓解潜在威胁的策略。本文还考察了当前的 MCP 态势,包括行业领导者的采用情况、各种用例,以及支持其集成的工具和平台。原创 2025-05-05 16:51:17 · 1795 阅读 · 0 评论 -
【翻译、转载】模型组件协议 (MCP):每个开发者都应尝试的 8 个 MCP 服务器!
它促进了互操作性,减少了对定制集成的需求,并简化了 AI 应用的开发。对于管理多个代码库的组织,它通过处理日常维护任务、生成关于开发模式的深刻分析,甚至根据专业知识和工作负载分配建议最佳审查者,提供了前所未有的效率。对于使用 Slack 作为主要沟通中心的开发团队来说,这种集成弥合了对话与行动之间的差距,使 AI 能够成为一个积极主动的团队成员,而不仅仅是一个被动工具。通过使 AI 能够直接与 Slack 的基础设施交互,它消除了重复性的沟通任务,并创建了能够实时响应团队活动的智能工作流程。原创 2025-05-05 16:30:40 · 826 阅读 · 0 评论 -
简单理解MCP:AI如何使用工具
想象一下,你试图将来自不同国家的电器插头插入你家的墙上插座——你需要各种转换器,因为它们的插头标准各不相同!类似地,不同的AI模型和不同的工具提供者可能有各自独特的“沟通”方式。,使得AI生态系统的不同部分能够顺畅连接和协作,从而实现了我们在现代AI应用中看到的复杂的工具使用能力。让我们来看看当你通过客户端应用向AI助手提问时,事情是如何运作的,比如问:“明天伦敦的天气怎么样?还有,最新的头条新闻是什么?但是,一个AI(比如驱动你最喜欢的聊天应用的那个)是如何可靠地连接并使用由不同开发者创建的各种工具呢?原创 2025-05-05 15:25:45 · 1187 阅读 · 0 评论 -
【转载】【翻译】图解智能体到智能体 (A2A) 协议
图解智能体到智能体(A2A)协议原创 2025-05-04 21:10:52 · 1086 阅读 · 0 评论 -
【翻译、转载】【转载】LLM 的函数调用与 MCP
函数调用是一种机制,允许 LLM 根据用户输入识别它需要什么工具以及何时调用它。LLM 接收来自用户的提示。LLM 决定它需要的工具。程序员实现程序来接受来自 LLM 的工具调用请求,并准备一个函数调用。函数调用(带有参数)被传递给将处理实际执行的后端服务。让我们快速看看实际操作!首先,我们定义一个工具函数。它使用yfinance库来获取指定股票代码的最新收盘价:【参考】# (示例 Python 代码,定义 get_stock_price 函数)原创 2025-05-04 20:52:56 · 1110 阅读 · 0 评论 -
【翻译、转载】【译文】图解模型上下文协议(MCP)
可视化MCP原创 2025-05-04 20:29:42 · 615 阅读 · 0 评论 -
【翻译、转载】【译文】模型上下文协议(Model Context Protocol, MCP)简介
其核心是,模型上下文协议是一种标准化的方式,让 AI 系统能够在对话期间访问外部信息源。可以将其想象为赋予 AI 模型在需要时**“查找信息或执行操作”**的能力,而不是仅仅依赖其预训练知识或当前的对话上下文。想象一下你正在与一个 AI 助手对话。没有 MCP,AI 只能利用其训练数据(有知识截止日期)以及你在当前对话中明确告知它的内容。有了 MCP,AI 可以动态地访问外部信息源——如数据库、API 或文档存储库——以提供更准确、最新和个性化的响应。原创 2025-05-04 20:17:51 · 958 阅读 · 0 评论 -
【翻译、转载】使用 LLM 构建 MCP
资料来源:本文仅仅是翻译。利用 Claude 等大型语言模型(LLM)加速您的 MCP 开发!本指南将帮助您使用 LLM 来构建自定义的模型上下文协议(Model Context Protocol, MCP)服务器和客户端。本教程将重点关注 Claude,但您也可以使用任何前沿的 LLM 来完成。原创 2025-05-04 20:08:11 · 688 阅读 · 0 评论 -
【翻译、转载】MCP 提示 (Prompts)
原文地址:https://modelcontextprotocol.io/docs/concepts/prompts#python提示 (Prompts) 使服务器能够定义可重用的提示模板和工作流,客户端可以轻松地将其呈现给用户和 LLM。它们提供了一种强大的方式来标准化和共享常见的 LLM 交互。提示被设计为用户控制 (user-controlled),这意味着它们从服务器暴露给客户端,目的是让用户能够显式选择它们来使用。MCP 中的提示是预定义的模板,可以:每个提示都通过以下结构定义:发现提示客户端原创 2025-05-04 15:37:17 · 1733 阅读 · 0 评论 -
【翻译、转载】MCP 资源 (Resources)
资源代表 MCP 服务器希望向客户端提供的任何类型的数据。文件内容数据库记录API 响应实时系统数据截图和图像日志文件等等每个资源都由一个唯一的 URI 标识,并且可以包含文本或二进制数据。原创 2025-05-04 15:28:24 · 1040 阅读 · 0 评论 -
【翻译、转载】MCP 核心架构
模型上下文协议 (MCP) 构建在一个灵活、可扩展的架构之上,能够实现 LLM 应用程序与集成之间的无缝通信。本文档涵盖了核心的架构组件和概念。有关模型上下文协议消息格式的详细信息,请参阅规范文档。传输层处理客户端和服务器之间的实际通信。SDK 和应用程序可以定义自己的高于 -32000 的错误代码。协议层处理消息帧、请求/响应关联以及高级通信模式。initialize 请求 (协议版本, 能力)initialize 响应 (协议版本, 能力)了解 MCP 如何连接客户端、服务器和 LLM。原创 2025-05-04 15:10:27 · 1496 阅读 · 0 评论 -
【翻译、转载】mcp是什么
Block 和 Apollo 等早期采用者已将 MCP 集成到其系统中,而 Zed、Replit、Codeium 和 Sourcegraph 等开发工具公司正在利用 MCP 来增强其平台——使 AI 代理能够更好地检索相关信息,以进一步理解编码任务的上下文,并用更少的尝试生成更精细、功能更强的代码。每个新的数据源都需要自定义实现,这使得真正互联的系统难以扩展。无论您是 AI 工具开发者、希望利用现有数据的企业,还是探索前沿技术的早期采用者,我们都邀请您与我们一起构建具备上下文感知能力的 AI 的未来。原创 2025-05-04 14:57:01 · 716 阅读 · 0 评论
分享