归一化方法在医学图像实战中的理解

本文探讨了深度学习中batchnorm、instancenorm、layernorm和groupnorm等归一化方法在医学图像处理中的实际应用,特别关注了小样本和batchsize影响下的性能差异。作者通过实例展示了batchnorm在小批量训练中的挑战和instancenorm的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:

总所周知在数据载入机器学习模型训练之前都需要进行归一化以保证数据在统一尺度有利于训练得到统一的特征,同样的对应特征而言在神经网络训练的时候不同深度卷积产生的特征尺度也会发生偏移和变化,为了统一特征学习,归一化概念被引入神经网络。

归一化手段在深度学习任务中有至关重要的作用,然而在工程实践中,由于医学图像采集困难,可能会出现样本估计与总体估计相差甚远的问题,因此需要对深度学习这些任务的归一化手段在医学图像中的应用进行探索


学习目标:

理解和分析深度学习常见归一化手段在医学图像上的实际使用

例如:

  1. batchnorm
  2. instancenorm
  3. layernorm
  4. groupnorm

学习内容:

一、 batchnorm
公式定义如下:
请添加图片描述
对于m个特征的输入,统计其所有特征构成的均值和方差,优化每一个特征使其满足标准正太分布(归一化到均值为0方差为1)并对每一个batch内维度进行求和计算,最后再通过可学习参数γ和β保留一部分原数据分布模式。
在神经网络训练阶段:
batchnorm包含γ和β两个参数有用学习,保留和计算当前特征的均值和方差
在神经网络测试阶段:
网络使用训练阶段保存下来的均值和方差,当

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

supernova121

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值