支持向量简要理解

在这里插入图片描述
决策方程符合感知机区分理论,我们基于线性代数来看这满足子空间理论,可以获取得到超平面。
在这里插入图片描述
支持向量机的目标是寻找最与超平面最近的点的最大距离,而距离计算如上,符合数学上计算点到线(面)的距离公式。
在这里插入图片描述
将距离描述为最优化问题,是典型的maxmin问题,寻找与决策超平面最近的点,并将该点的距离最大化。
在这里插入图片描述
将约束条件强行约束大于0,变为大于1,从而简化目标函数。这变成一个条件极值问题。
在这里插入图片描述
基于拉格朗日乘子发可用于求解,将w和b寻找与a的关系,代入求解
在这里插入图片描述
该公式只留下a项了
在这里插入图片描述
继续转化问题,现在是对a求极值,将求解极大值问题加负号转化为求极小值问题,将特征点代入方程即可求出a,并最终反推回W,B

在这里插入图片描述
为了防止噪声对模型影响,引入松弛因子做正则化
在这里插入图片描述
非线性核的目的是基于线性代数投影的理论,将数据投影至其他空间,将当前空间中线性不可分的问题转化为其他空间线性可分问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

supernova121

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值