【免费】基于扩展(EKF)和无迹卡尔曼滤波(UKF)的电力系统动态状态估计

目录

1 主要内容

2 部分代码

3 程序结果

4 下载链接


主要内容

该程序对应文章《Power System Dynamic State Estimation Using Extended and Unscented Kalman Filters》,电力系统状态的准确估计对于提高电力系统的可靠性、弹性、安全性和稳定性具有重要意义,虽然近年来测量设备和传输技术的发展大大降低了测量和传输误差,但这些测量仍然不能完全没有测量噪声。因此,需要对噪声测量值进行过滤,从而获得准确的电力系统运行动态。本程序采用两种方法,分别是扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF),对电力系统进行动态状态估计,以39节点系统为算例验证了方法的有效性。

部分代码

clear;
clc;
​
%% Power Flow calculation
% Y=Ybus_new(case9_new_Sauer); % 9 bus system data obtained from MATPOWER
% result=runpf(case9_new_Sauer); % run ac power flow, in this case default NR is used
​
​
%result= runpf(case5_Overbye); 
%Y=Ybus_new(case5_Overbye); 
​
% Y=Ybus_new(case14); 
% result=runpf(case14);
% 
Y=Ybus_new(case39);
result=runpf(case39);
​
​
Vmag=result.bus(:, 8); % Pu voltage magnitude of each buses 
Vph=result.bus(:, 9); % angle in degree
V=Vmag.*exp(1j*Vph*pi/180); 
P_jQ=conj(V).*(Y*V); % Net Power at each node
S=conj(P_jQ);
S=S/100; 
Sg=result.gen(:, 2)+1j*result.gen(:, 3); 
Sg=Sg/100;
​
​
%% machine data for 9 bus system
% Xd=[0.06080; 0.11980; 0.18130];
% R=[0;0;0];
% H=[23.64; 6.4; 3.010];
% M=H/(pi*60); 
%D=[0.0125;0.0034;0.0016];
% 
%% Data of 9 bus system from Peter Sauer.
% Xd=[0.06080; 0.11980; 0.18130];
% R=[0;0;0];
% H=[23.64; 6.4; 3.01];
% %H=[13.64; 6.4; 3.01]; 
% D=[0.0255; 0.00663; 0.00265]; 
% %D=[9.6; 2.5; 1]; % If we use this value need to devide the D term by 2*pi*60 
% f0=60; 
% w_syn=2*pi*f0; 
% M=2*H/w_syn; 
% gen_bus=result.gen(:, 1); 
​
%% machine data for 14 bus system 
% % Machine data 
% H=[5.1498; 6.54; 6.54; 5.06; 5.06];
% Xd=[0.2995; 0.185; 0.185; 0.232; 0.232];
% R=zeros(length(Xd), 1); 
%  
% f0=60; 
% w_syn=2*pi*f0; 
% D=[2; 2; 2; 2; 2]/w_syn;
% 
% M=2*H/w_syn; 
% 
% gen_bus=result.gen(:, 1); 
​
%% Overbye data for 5 bus system 
% Xd=[0.05; 0.025]; 
% R=[0; 0]; 
% H=[]; 
% D=[]; 
% f0=60; 
% w_syn=2*pi*f0; 
% M=2*H/w_syn; 
% gen_bus=result.gen(:, 1); 
​
%% Case 39 bus data 
Xd=[0.006; 0.0697; 0.0531; 0.0436; 0.132; 0.05; 0.049; 0.057; 0.057; 0.031]; 
H=[500; 30.3; 35.8;28.6; 26; 34.8; 26.4; 24.3; 34.5; 42]; 
R=zeros(length(Xd), 1); 
f0=60; 
w_syn=2*pi*f0; 
​
D=[0; 0;0 ;0; 0; 0; 0; 0; 0; 0]; 
D=D/w_syn;
​
M=2*H/w_syn; 
​
gen_bus=result.gen(:, 1); 
​
%% case 145
​
​
​
%% calculate Y22
Y22=diag(1./(1j*Xd)); 
​
%% Calculation of Y11
SL=result.bus(:, 3)+1j*result.bus(:, 4); 
SL=SL/100; 
YL=conj(SL)./(abs(V).^2); % 
Y11=Y+diag(YL);
Y11(gen_bus, gen_bus)=Y11(gen_bus, gen_bus)+Y22;

程序结果

原文结果:

4 下载链接

  • 45
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于LSTM的财务因子预测选股模型LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值