预备知识
一、时域经典法解微分方程
- 求齐次解
先根据微分方程写出特征方程,再解出特征根,最后根据特征根设出齐次解的形式,以两根为例:
根的情况 | 齐次解形式 |
---|---|
无重根 | C1 eα1t + C2 eα2t |
二重根 | (C1 + C2 t) eαt |
- 求特解
直接根据激励信号形式设出特解,代入原方程解出特解系数
激励信号形式 | 特解形式 |
---|---|
tp | B1 tp +B2 tp-1+…+Bp+1 |
eαt | B eαt |
cos ωt 或 sin ωt | B1 cos ωt + B2 sin ωt |
- 完全解 = 齐次解 + 特解,将初始条件代入含待定系数的完全解,即得确定的完全解
二、0-到0+的跳变
在上面的时域经典法解微分方程时,默认起始条件(0-)和初始条件(0+)相等,即不会发生跳变
对于实际的电路而言,一般的输入信号也不会引起跳变,但是由于有冲激函数、阶跃函数存在,特定条件下,电路的储能状态有可能会发生跳变
例如:阶跃电压/冲激电流作用于电容会引起电容电压的跳变 ;阶跃电流/冲激电压作用于电感会引起电感电流的跳变
而 电容电压 和 电感电流 都对应于电路的储能状态,也就是起始/初始条件,因此输入这些信号时会引起电路起始点的跳变
三、奇异函数匹配方法
1.何为奇异函数?
广义地讲,奇异函数是指本身或其导数/积分含有不连续点的一类函数
不过一般情况下,我们讨论的都是单位冲激函数及其导数/积分
2.何为奇异函数匹配方法?
当输入为冲激函数或其积分/导数时,根据微分方程两侧的阶数可以判断对应输出是否含有冲激信号或其积分/导数
举个简单的例子
对于微分方程 r’’(t) + r’(t) = 2e(t),若输入e(t)为单位冲激信号 δ(t)
那么容易知道 r’’(t) 含有冲激项 2δ(t) ,进而推出 r’(t) 含有阶跃项 2u(t)
3.有什么用?
继续上面的例子,由于r’(t) 含有阶跃项 2u(t),故 r’(t) 在起始点发生跳变,跳变值为2,即r’(0+)=r’(0-)+2
可以看到,奇异函数匹配方法的作用就是判断起始点是否发生跳变,以及跳变了多少
求冲激响应和阶跃响应
冲激响应和阶跃响应之间存在导数关系,故只以冲激响应为例来说明求解过程
而之所以前面做那么多铺垫,其实都是在说明一个问题:起始点存在跳变的微分方程怎么求解?
没错,冲激响应的定义就是系统在单位冲激信号作用下的零状态响应,因而系统有可能存在起始点的跳变,而求解冲激响应的过程其实就是求起始点存在跳变的微分方程的解的过程,整体思路和时域经典法解微分方程基本一致,但要判断起始点是否发生跳变,以及跳变了多少
方法一:
- 由奇异函数平衡原理确定 0+ 条件
- 由特征方程解出特征根,写出齐次解的形式(单位冲激信号只在零点有值,因此特解为0)
- 将 0+ 条件代入得到的齐次解,即得方程的最终解
说明:标准的冲激响应求解方法,利用奇异函数平衡原理求出0+ 条件,再根据经典方法求解
方法二:
- 由特征方程解出特征根,写出齐次解的形式(单位冲激信号只在零点有值,因此特解为0)
- 由齐次解得到其各次导数
- 将齐次解及其各次导数代入原方程,对比两侧得出系数
说明:另一种求冲激响应的方法,比方法一更直接,绕过了求0+ 条件的问题,直接将h(t)及其各次导数代入,对方程进行求解
可能有人会感到疑惑,第二种方法为什么不考虑初始条件也能求解呢?初始条件不起作用了吗?
其实并非如此,想不明白原因的肯定是定义没有搞清楚,冲激响应的定义是系统在单位冲激信号作用下的零状态响应,注意是零状态响应,即系统起始值为0,冲激响应只与系统本身有关,在将h(t)及其各次导数代入方程的时候,也相当于求得了0+ 条件,只是没有写出来而已
冲激响应和阶跃响应的关系:h(t) = g’(t)
值得注意的是,求阶跃响应时是有特解的,因为阶跃信号在大于0的时刻相当于常数E;
此外,如果方程左侧阶数低于右侧,求冲激响应时,直接利用奇异函数匹配方法可能不好匹配,这时可以考虑先求阶跃响应,再对阶跃响应积分得到冲激响应