SIMCA的OPLS-DA相关

转自阿趣代谢微信公众号

1. 去除离群值后新做的PCA分析还有很多样本离群,这种情况正常吗?

正常,因为样本本身并不是独立的关系,存在组间差异和组内差异。

2.OPLS-DA中score图t旁边的数字说是权重,是什么的权重?有什么含义?

t[1]是针对预测主成分(横坐标)的回归系数权重大小;t[2]是针对正交主成分(纵坐标)的回归系数权重大小。

3.做三组之间的OPLS-DA时,3D图有的数据拟合出来的坐标是t1,t2,t3,有的拟合出来是t1,t2,t0(1),纵坐标不同有什么影响吗?

t1,t2,t3分别表示第一预测主成分(X/横坐标),第二预测主成分(Y/纵坐标)和第三预测主成分(Z坐标);t1,t2,t0(1)分别表示第一预测主成分(X/横坐标),第二预测主成分(Y/纵坐标)和第一正交主成分。

4.关于OPLS-DA代谢组分析模型验证的问题。文献上一般附有R2X、R2Y、Q2值加交互验证图。是不是R2X和R2Y 大于Q2,Q2大于0.5?然后验证图是选择K空白的数据分析吧?怎么看呢?

在这里插入图片描述
在这里插入图片描述

5.OPLS-DA为什么不能分析多组的数据?

OPLS-DA可以进行多组的数据分析,但是要找寻组间物质的差异一般建议用两组分析。

6.OPLS-DA模型是必须以PLS-DA为模型的基础验证么?很多文献都有这样一句话,出现PLS-DA模型验证不成立,OPLS-DA又可以用的情况是什么原因?

不是,用一个就可以了,两者是平行的。PLS-DA容易过拟合,所以发展了OPLS-DA。

7.SIMCA做出来的OPLS-DA的Q2值是负值,这代表什么?

说明差异并不太显著,可以尝试对数转换或者调整scaling方法看看,不过一般效果都差不多。Q2是负值的情况说明数据间差异程度本身并不太大。

8.OPLS和OPLS-DA都可以做置换检验吗?(SIMCA软件说明中说OPLS-DA不适合做置换检验)

都可以。实际上OPLS-DA是属于OPLS的一种情况,当Y变量是分类变量(0或1)而非连续变量的时候,OPLS与OPLS-DA模型的分析结果是一样的。

9.OPLS、 O2PLS、 OnPLS的区别在于它们有几个block,那么,什么算是一个block?这个block与Y变量有什么关系,与Y变量的数量有关吗?

block可以理解为独立不同类型模块的数据。这样一来,针对单一类型数据(比如代谢组学)采用OPLS,针对两个不同类型数据(比如代谢组学&蛋白质组学)采用O2PLS,针对三个或三个以上不同类型数据(比如代谢组学&蛋白质组学&转录组学&临床数据指标)采用OnPLS。

10.用SIMCA提取出模型和正常的Vip 值,想进一步提取出p<0.05差异物,用spss的t检验来分析,但是不知道用独立样本t检验还是单样本t检验,两者在文献上都有看到。

我们一般用独立样本t检验。

OPLS-DA (Orthogonal Partial Least Squares Discriminant Analysis) 是一种结合了主成分分析(PCA)判别分析(Discriminant Analysis)的统计方法,用于高维数据集中的定性变量分类。在Python中,我们可以使用`sklearn`库中的`PLSRegression`或`PLSClassifier`来实现OPLS-DA模型,并通过`pandas``matplotlib`进行结果可视化。 以下是使用`scikit-learn`的基本步骤: ```python # 导入所需的库 from sklearn.datasets import load_iris from sklearn.decomposition import PLSRegression import pandas as pd import matplotlib.pyplot as plt # 加载示例数据 data = load_iris() X = data.data y = data.target # 将类别转换为数值以便处理 le = preprocessing.LabelEncoder() y_encoded = le.fit_transform(y) # 使用OPLS-DA model = PLSRegression(n_components=2) if classification else PLSRegression(n_components=2) model.fit(X, y_encoded) # 获取得分投影 scores = model.transform(X) X_scores = pd.DataFrame(scores, columns=['score_1', 'score_2']) # 结果可视化 plt.figure(figsize=(8,6)) for label in range(model.n_classes_): plt.scatter(X_scores.iloc[y == label, 0], X_scores.iloc[y == label, 1], label=le.classes_[label]) plt.xlabel('Score 1') plt.ylabel('Score 2') plt.legend() plt.title('OPLS-DA Score Plot') plt.show() ``` 这里假设`classification`是一个布尔值,判断是否是分类任务(如果是,则使用`PLSClassifier`)。这个例子中,我们创建了一个二维投影图,其中每个类别的样本按照其在第一个第二个得分维度上的位置展示。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值