目的:
旨在记录在Leedcode网上刷题的过程,记录心得。
题目:
输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
限制:
0 <= 节点个数 <= 5000
思路:
前序遍历:根左右
中序遍历:左根右
由前序遍历的结果中的元素将中序遍历结果中的元素分为2部分(左右子树2部分);
再分别递归处理左右子树的重建:
如果只有前序序列,我们除了第一个位置知道肯定是根节点之外,其他都不能确定;
如果只有中序序列,我们只知道第一个值是整个树最左边的节点,最后一个值是整个树最右边的节点;
对照起来看,通过根节点的值,就可以将中序序列一分为二,前面是根节点左子树,后面是根节点右子树;
再通过左子树序列的长度,又可以从前序序列中找到对应长度的前序序列;
有了左右子树对应的前序序列和中序序列,按照同样的方式,就可以递归建树。
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
/*
前序遍历:根左右
中序遍历:左根右
由前序遍历的结果中的元素将中序遍历结果中的元素分为2部分(左右子树2部分);
再分别递归处理左右子树的重建:
如果只有前序序列,我们除了第一个位置知道肯定是根节点之外,其他都不能确定;
如果只有中序序列,我们只知道第一个值是整个树最左边的节点,最后一个值是整个树最右边的节点;
对照起来看,通过根节点的值,就可以将中序序列一分为二,前面是根节点左子树,后面是根节点右子树;
再通过左子树序列的长度,又可以从前序序列中找到对应长度的前序序列;
有了左右子树对应的前序序列和中序序列,按照同样的方式,就可以递归建树。
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
if(preorder.size()!=inorder.size()||inorder.size()==0) return NULL;
return rebuildTree(preorder,inorder,0,0,inorder.size());
}
TreeNode* rebuildTree(vector<int>& preorder, vector<int>& inorder,int preId,int inLeftStart,int inRightEnd){
if(inLeftStart==inRightEnd) return NULL;
int val = preorder[preId];
int inIdx = inLeftStart;
while(inorder[inIdx]!=val) inIdx++;
int inLeftEnd = inIdx;
int inRightStart = inIdx + 1;
TreeNode *root = new TreeNode(val);
root->left = rebuildTree(preorder,inorder,preId+1,inLeftStart,inLeftEnd);
root->right = rebuildTree(preorder,inorder,preId+1+(inLeftEnd-inLeftStart),inRightStart,inRightEnd);
return root;
}
};
效果: