【图分析】基础图论

(1)图(graph) G = ( V , E ) G=(V,E) G=(V,E)由点集 V V V(nodes或vertices)和边集 E E E(edges或arcs)组成。点表示实体对象,边表示实体对象之间的联系。
(2)假设 n = ∣ V ∣ n=|V| n=V(点集中点的数量)和 m = ∣ E ∣ m=|E| m=E(边集中边的数量)。图 G G G的大小定义为为图包含的点的数量,即 n n n。对于所有的 v , w ∈ V v,w\in V v,wV ( v , w ) (v,w) (v,w)表示为从 v v v w w w的一条有向边(direct edge), { v , w } \{v,w\} {v,w}表示为从 v v v w w w之间的一条无向边(undirect edge)。如果 E ⊆ { { v , w } ∣ v , w ∈ V } E\subseteq\{\{v,w\}|v,w\in V\} E{{v,w}v,wV},则称图 G G G是无向图,如果 E ⊆ { ( v , w ) ∣ v , w ∈ V } E\subseteq\{(v,w)|v,w\in V\} E{(v,w)v,wV},则称图 G G G为有向图。
(3)一个连续的边的序列称为路径(path)或通路(walk),这条路径的长度(length)是构成它的边的数量。
(4)如果一条路径经过了 G G G中的所有节点,并且仅仅经过一次,则称这条路径是node-simple的。如果一条路径经过了 G G G中的所有边,并且仅仅经过一次,则称这条路径是edge-simple(或者是simple)的。
(5)对于 G G G中所有的点对 v , w ∈ V v,w\in V v,wV,如果都有一条路径连接 v v v w w w,则称 G G G是连通的(connected),它是连通图。如果一条路径是simple路径,并且它所连接的起始点和终点都是同一个点,则称这条路径是一个环(cycle)或闭通路(closed walk)。
(6)图 G G G的周长指的是 G G G中最短的环的长度。如果图 G G G是连通的,并且没有环,则称 G G G是一棵树(Tree)。假设有一个图 T = ( V ′ , E ′ ) T=(V',E') T=(V,E),其中 V ′ = V , E ′ ⊆ E V'=V,E'\subseteq E V=V,EE,则称T是图 G = ( V , E ) G=(V,E) G=(V,E)的生成树(Spanning Tree)。
(7)如果 G G G中的点集可以被分成两个点集 V 1 V_1 V1 V 2 V_2 V2,并且 E ⊆ { { v , w } ∣ v ∈ V 1 , w ∈ V 2 } E\subseteq\{\{v,w\}|v\in V_1,w\in V_2\} E{{v,w}vV1,wV2},则称这个图是二分图(bipartite,也可以称作是二部图)。
(8)对于任意的节点对 v , w ∈ V v,w\in V v,wV δ ( v , w ) \delta(v,w) δ(v,w)表示从 v v v w w w距离,即它们最短路径的距离。 G G G的直径(diameter)表示为 m a x { δ ( v , w ) ∣ v , w ∈ V } max\{\delta(v,w)|v,w\in V\} max{δ(v,w)v,wV}。如果 { v , w } ∈ E \{v,w\}\in E {v,w}E,则称 v v v w w w的邻居(neighbor)。对于 U ⊆ V U\subseteq V UV U U U的邻居表示为
Γ ( U ) = { v ∈ V − U ∣ ∃ u ∈ U , u , v ∈ E } \Gamma(U)=\{v\in V-U|\exists u\in U,{u,v}\in E\} Γ(U)={vVU∣∃uU,u,vE}
v v v的邻居的数量称为它的度(degree),并表示为 d v d_v dv G G G的度表示为 d = m a x { d v ∣ v ∈ V } d=max\{d_v|v\in V\} d=max{dvvV},如果 G G G中所有的节点都有相同的度,则称 G G G为正则(regular)图。
(9)如果一个图族 G = { G n ∣ n ∈ I N } \mathcal{G}=\{G_n|n\in \mathbb{IN}\} G={GnnIN}中的每一个图 G n G_n Gn的度满足 d ( n ) d(n) d(n)这个公式,则 G \mathcal{G} G的度也为 d ( n ) d(n) d(n)
一个网络可由一个带有边容量(edge capacities)的这个属性的图 G = ( V , E ) G=(V,E) G=(V,E)表示,边容量由一个函数 c c c给出, c ( v , w ) : E → I R + c(v,w):E\rightarrow\mathbb{IR}^+ c(v,w):EIR+。一个点 v ∈ V v\in V vV的容量是与它相连的边的边容量的和。
c ( v ) = ∑ w ∈ V c ( v , w ) c(v)=\displaystyle\sum_{w\in V}c(v,w) c(v)=wVc(v,w)
V V V的自己 U U U的容量为 c ( U ) = ∑ u ∈ U c ( u ) c(U)=\sum_{u\in U}c(u) c(U)=uUc(u)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值