q次询问求两个点之间的距离,并且可以随时修改某条边的长度,最短距离可以用lca来求,但是树上维护每一个点到root的距离必须要用dfs序来记录时间戳,在dfs的时候顺便记录每一条边(u,v)对应的v节点,更改某条边时需要更新的是将L[v]~R[v]的值加上这一条边的变化量,然后log查询每个点到root的距离即可。
改变这一条边u->v的值,要记录v点,因为其实改变这条边的值改变的是L[v]~R[v]的值
对应的线段树的操作就是区间更新,单点查询。
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<set>
#include<stack>
#include<vector>
#include<map>
#include<queue>
#define myself i,l,r
#define lson i<<1
#define rson i<<1|1
#define Lson i<<1,l,mid
#define Rson i<<1|1,mid+1,r
#define half (l+r)/2
#define inff 0x3f3f3f3f
#define lowbit(x) x&(-x)
#define PI 3.14159265358979323846
#define me(a,b) memset(a,b,sizeof(a))
#define min4(a,b,c,d) min(min(a,b),min(c,d))
#define min3(x,y,z) min(min(x,y),min(y,z))
#define pii make_pair
const int dir[4][2]= {0,-1,-1,0,0,1,1,0};
typedef long long ll;
const ll inFF=9223372036854775807;
typedef unsigned long long ull;
using namespace std;
const int maxn=1e5+5;
int f[maxn][33],head[maxn],dis[maxn],s[maxn],d[maxn];///d表示深度,dis和s是dfs过程中暂时记录到root点的距离
int L[maxn],R[maxn];///L,R分别记录dfs序的时间戳,
int way[maxn],eg[maxn];///记录边对应dfs中开始的点以及那条边的权值,eg一直在更新
int root,sign,t,n,q;
struct node
{
int to,p,val;
}edge[maxn<<1];
int tree[maxn<<2],lazy[maxn<<2];
void init()
{
sign=t=0;
for(int i=0;i<=n;i++)
head[i]=-1;
}
void add(int u,int v,int val)
{
edge[sign].to=v;
edge[sign].val=val;
edge[sign].p=head[u];
head[u]=sign++;
}
void dfs(int u)
{
L[u]=++t;
s[t]=dis[u];
for(int i=1;(1<<i)<=n;i++)
f[u][i]=f[f[u][i-1]][i-1];
for(int i=head[u];~i;i=edge[i].p)
{
int v=edge[i].to;
if(f[u][0]==v) continue;
dis[v]=dis[u]+edge[i].val;
way[i/2+1]=v;///这一条边u->v,记录v点,因为改变这条边的值改变的是L[v]~R[v]的值
eg[i/2+1]=edge[i].val;///因为改变量,所以更新后要记录
d[v]=d[u]+1;///深度
f[v][0]=u;///父亲
dfs(v);
}
R[u]=t;
}
void pushdown(int i)
{
if(lazy[i])
{
lazy[lson]+=lazy[i];
lazy[rson]+=lazy[i];
lazy[i]=0;
}
}
void build(int i,int l,int r)
{
lazy[i]=0;
if(l==r)
{
tree[i]=s[l];
return;
}
int mid=half;
build(Lson);
build(Rson);
}
void update(int i,int l,int r,int ql,int qr,int val)
{
if(ql<=l&&qr>=r){
lazy[i]+=val;
return;
}
int mid=half;
if(qr<=mid) update(Lson,ql,qr,val);
else if(ql>=mid+1) update(Rson,ql,qr,val);
else {
update(Lson,ql,mid,val);
update(Rson,mid+1,qr,val);
}
}
int query(int i,int l,int r,int x)
{
if(l==r) return tree[i]+lazy[i];
int mid=half;
pushdown(i);
if(x<=mid) return query(Lson,x);
else return query(Rson,x);
}
int lca(int a,int b)
{
if(d[a]<d[b]) swap(a,b);
int x=d[a]-d[b];
for(int i=0;(1<<i)<=x;i++)
if((1<<i)&x) a=f[a][i];
if(a!=b)
{
for(int i=(int)log2(n);i>=0;i--)
if(f[a][i]!=f[b][i]) a=f[a][i],b=f[b][i];
a=f[a][0];
}
return a;
}
int find(int a,int b)
{
int r=lca(a,b);
return query(1,1,n,L[a])+query(1,1,n,L[b])-2*query(1,1,n,L[r]);
}
int main()
{
int op,x,y,val;
while(cin>>n>>q>>root)
{
init();
for(int i=1;i<n;i++)
{
scanf("%d %d %d",&x,&y,&val);
add(x,y,val),add(y,x,val);
}
f[root][0]=root,d[root]=0,dis[root]=0;
dfs(root);
build(1,1,n);
while(q--)
{
scanf("%d",&op);
if(!op)
{
scanf("%d",&x);
printf("%d\n",find(root,x));
root=x;
}
else
{
scanf("%d %d",&x,&y);
int v=way[x];
update(1,1,n,L[v],R[v],y-eg[x]);
eg[x]=y;
}
}
}
return 0;
}