高数复习

极限

等价无穷小

(1)指数函数: a x − 1                        ∼ a^x-1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \sim ax1                       x l n a xlna xlna
(2)幂函数: ( 1 + B x ) a − 1              ∼ (1+Bx)^a-1\ \ \ \ \ \ \ \ \ \ \ \ \sim (1+Bx)a1             a B x aBx aBx
(3)对数函数: l o g a ( 1 + x )                ∼ log_a(1+x)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \sim loga(1+x)               x l n a \frac{x}{lna} lnax
(4)其他:
a x − ( 1 + a x ) l n ( 1 + a x ) ( a x ) 2 ( 1 + a x ) ∼ − 1 2 \frac{ax-(1+ax)ln(1+ax)}{(ax)^2(1+ax)} \sim -\frac{1}{2} (ax)2(1+ax)ax(1+ax)ln(1+ax)21
1 − s i n x x ∼ 1 6 x 2 1-\frac{sinx}{x}\sim\frac{1}{6}x^2 1xsinx61x2

等价无穷大

(1) lim ⁡ x → ∞ ( 1 + 1 x ) x 2 = lim ⁡ x → ∞ e − 1 2 e x \lim_{x\to\infty}(1+\frac{1}{x})^{x^2}=\lim_{x\to\infty}e^{-\frac{1}{2}}e^x xlim(1+x1)x2=xlime21ex
这里一开始推出矛盾
lim ⁡ x → ∞ ( 1 + 1 x ) x 2 = lim ⁡ x → ∞ e x 2 l n ( 1 + 1 x ) = e x 2 ⋅ 1 x = e x \lim_{x\to\infty}(1+\frac{1}{x})^{x^2}=\lim_{x\to\infty}e^{x^2ln(1+\frac{1}{x})}=e^{x^2\cdot\frac{1}{x}}=e^x xlim(1+x1)x2=xlimex2ln(1+x1)=ex2x1=ex
这个的原因应该是展开精度不够,上面的 l n ( 1 + 1 x ) ∼ 1 x ln(1+\frac{1}{x})\sim\frac{1}{x} ln(1+x1)x1相当于展开到第一项,精度不够,如果多写几项就能发现
lim ⁡ x → ∞ e x 2 l n ( 1 + 1 x ) = e x 2 ( 1 x − 1 2 x 2 + O ( 1 x 2 ) ) = e x ⋅ e − 1 2 ⋅ e O ( 1 x 2 ) ) = e x ⋅ e − 1 2 ⋅ 1 \lim_{x\to\infty}e^{x^2ln(1+\frac{1}{x})}=e^{x^2(\frac{1}{x}-\frac{1}{2x^2}+O(\frac{1}{x^2}))}=e^x\cdot e^{-\frac{1}{2}}\cdot e^{O(\frac{1}{x^2}))}=e^x\cdot e^{-\frac{1}{2}}\cdot 1 xlimex2ln(1+x1)=ex2(x12x21+O(x21))=exe21eO(x21))=exe211
这样就对了
(2)斯特林近似
lim ⁡ n → ∞ n ! = lim ⁡ n → ∞ 2 π n ( n e ) n \lim_{n\to\infty}n!=\lim_{n\to\infty}\sqrt{2\pi n}(\frac{n}{e})^n nlimn!=nlim2πn (en)n
一般看到阶乘的求极限贼好用
顺便记一下阶乘的积分公式
n ! = ∫ 0 + ∞ x n e − x d x n!=\int_{0}^{+\infty}x^ne^{-x}dx n!=0+xnexdx

常用泰勒展开

①: t a n x tanx tanx

t a n x = x + 1 3 x 3 + 2 15 x 5 + 17 315 x 7 + . . . tanx=x+\frac{1}{3}x^3+\frac{2}{15}x^5+\frac{17}{315}x^7+... tanx=x+31x3+152x5+31517x7+...

②: a r c t a n x arctanx arctanx

a r c t a n x = x − 1 3 x 3 + 1 5 x 5 − . . . . arctanx=x-\frac{1}{3}x^3+\frac{1}{5}x^5-.... arctanx=x31x3+51x5....

③: a r c s i n x arcsinx arcsinx

a r c s i n x = x + 1 6 x 3 + 3 40 x 5 + . . . arcsinx=x+\frac{1}{6}x^3+\frac{3}{40}x^5+... arcsinx=x+61x3+403x5+...

④: ( 1 + x ) a (1+x)^a (1+x)a

( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + a ( a − 1 ) ( a − 2 ) 3 ! x 3 + . . . (1+x)^a=1+ax+\frac{a(a-1)}{2!}x^2+\frac{a(a-1)(a-2)}{3!}x^3+... (1+x)a=1+ax+2!a(a1)x2+3!a(a1)(a2)x3+...

⑤: ( 1 + x ) 1 x (1+x)^{\frac{1}{x}} (1+x)x1

( 1 + x ) 1 x = e ( 1 − 1 2 x + 11 24 x 2 − 7 16 x 3 + . . . ) (1+x)^{\frac{1}{x}}=e(1-\frac{1}{2}x+\frac{11}{24}x^2-\frac{7}{16}x^3+...) (1+x)x1=e(121x+2411x2167x3+...)

斯托克斯公式

∮ F ⋅ d r = ∬ ▽ × F d S \oint F\cdot dr=\iint \triangledown \times F dS Fdr=×FdS

∮ ( F x d x + F y d y + F z d z ) = ∬ ∣ d y d z d x d z d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z F x F y F z ∣ d S \oint(F_xdx+F_ydy+F_zdz)=\iint\begin{vmatrix} dydz& dxdz &dxdy \\ \frac{\partial}{\partial x}&\frac{\partial}{\partial y} &\frac{\partial}{\partial z} \\ F_x &F_y &F_z\end{vmatrix}dS (Fxdx+Fydy+Fzdz)=dydzxFxdxdzyFydxdyzFzdS

∮ ( F x d x + F y d y + F z d z ) = ∬ ( ∂ F z ∂ y − ∂ F y ∂ z ) d y d z − ( ∂ F z ∂ x − ∂ F x ∂ z ) d x d z + ( ∂ F y ∂ x − ∂ F x ∂ y ) d x d y \oint(F_xdx+F_ydy+F_zdz)=\iint(\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z})dydz-(\frac{\partial F_z}{\partial x}-\frac{\partial F_x}{\partial z})dxdz+(\frac{\partial F_y}{\partial x}-\frac{\partial F_x}{\partial y})dxdy (Fxdx+Fydy+Fzdz)=(yFz

  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值