20180917 - 机器学习与线性回归

机器学习的定义:

        机器学习是人工智能的一个分支,主要关于构造和研究可以从数据中学习的系统。

机器学习的任务类型:(吹牛逼可以用)

        监督学习(supervised learning):

                回归 (Regression)

                分类 (classification)

                排序 (ranking)

        非监督学习:

                聚类 (clustering)

                降维 (dimensionality reduction)

                概率密度估计(density estimation)

        半监督学习(semi-supervised learning):

        增强学习(reinforcement learning):

        迁移学习(transfer learning):

机器学习任务的一般步骤:

       1. 特征工程(FE feature engineering)

             有可能是最重要的步骤

        2. 问题建模,模型选择

              目标函数/决策边界的形状

              选择什么样的模型(决策边界的形状)

              使用什么样的目标函数来进行训练

        3. 模型训练

             根据数目估计模型参数

             优化求解:求目标函数的极小值

        4. 评估, 在校验集上评估模型的性能 

        5. 模型的应用和预测

线性模型转化成非线性模型:

        - 基函数: x^{2}、exp、log、样条函数、决策函数....

        - 核化:将原问题转化成对偶问题,将对偶问题中的向量点积<x, y>换成核函数k(x, y)

优化:

        直接求解

        梯度下降(Gradient descent)

                迭代终止条件:

                        最大迭代次数

                        相邻两步的变化量小于某个预设值

        二阶牛顿法

部分简写说明:

    RMS : root mean square 均方根

    MAP : maximum a posteriori 最大后验概率

    generlization : 推广性, 学习器在新的测试数据上的表现

    overfitting:过拟合

    RSS : residual sum of square 

    overshoot the minimum : 学习率(步长)过大的时候,可能会出现跳过局部最小值点的情况

    SGD Stochastic gradient descent :随机梯度下降

    CV : cross validation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值