我目前在一家公司做python数据分析,是股票金融量化方面的,我之前是做java的,项目组有需求,我就通过3个月,把python学到了能干活的地步了,我不敢说我的方法是最好的,但应该是有一定的可操作性。
我首先通过如下的pyhton书入门。入门的时候,千万首先要搭建好开发环境,我建议是用python3.8解释器加pycharm。
入门时,一定得边运行代码边看结果,这样一般最长就能用一个月了解python,其实我就用了2周就了解了python的基本语法。
随后我用这本书了解了数据分析,也是运行代码+了解api,数据分析具体包括numpy,pandas和matplotlib三剑客,外带爬虫和机器学习,这本书还行。
其实当你看好这两本书,并且运行通里面的案例后,就大致知道数据分析要干嘛,以及怎么干了,我看好以后,项目组里的python股票量化方面的基本需求,比如绘制 macd,用 机器学习分析走势,至少我能干了,当然看的时候还需要查些细节api以及参数,但有这两本书打底,问题也不大。
我做了一点时间项目以后,然后自己也写了两本python数据分析的书,自己感觉能站在初学者的角度来讲,而且这两本书,有学校选做教材了。
这本书是清华大学出版社,其中我是以股票案例带领大家学python机器学习和数据分析,里面的案例甚至还可以直接用作毕业设计和课程设计,里面包含了python基本语法,numpy,pandas和matplotlib三剑客和sklearn机器学习库。
另外一本是这个,是机械工业出版社,华章出的,里面包含了scrapy爬虫框架,numpy,pandas和matplotlib三剑客和sklearn机器学习库。给出的案例有股票分析,二手房数据爬取分析和图书爬取和分析。应该也能带领大家入门python数据分析。
而且这两本书都带视频教程,包括了如何搭建python开发环境,如何运行代码,以及对数据分析,机器学习和爬虫等知识点的讲解。从销量和读者反馈来看,应该可以帮到大家。