1122. Hamiltonian Cycle (25) PAT 甲级

本文介绍了一种使用C++实现的图遍历算法验证方法,通过输入顶点和边的关系来构建图,并验证一系列路径是否构成合法的环路。该算法检查路径中每个节点之间的连接性、节点顺序的有效性及路径闭环条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门

#include<stdio.h>
#include<vector>
#define MAX_V 210
#define INF 100000000
#include<algorithm>
using namespace std;

int G[MAX_V][MAX_V];

int n,m;
int k;
int len;
vector<int> h;

bool judge(){
    if(h.size()!=n+1)   return false;
    if(h[0]!=h[h.size()-1]) return false;
    vector<int> temp(h.begin(),h.end()-1);
    sort(temp.begin(),temp.end());
    for(int i=0;i<temp.size();i++){
        if(temp[i]!=i+1)    return false;
    }
    for(int i=0;i<h.size()-1;i++){
        int u=h[i],v=h[i+1];
        if(G[u][v]==INF)    return false;
    }
    return true;
}

int main(){

    fill(G[0],G[0]+MAX_V*MAX_V,INF);
    scanf("%d%d",&n,&m);
    int V1,V2;
    int v;
    for(int i=0;i<m;i++){
        scanf("%d%d",&V1,&V2);
        G[V1][V2]=G[V2][V1]=0;
    }
    scanf("%d",&k);
    for(int i=0;i<k;i++){
        int N;
        scanf("%d",&N);
        h.clear();
        for(int i=0;i<N;i++){
            scanf("%d",&v);
            h.push_back(v);
        }
        if(judge()){
            printf("YES\n");
        }
        else{
            printf("NO\n");
        }
    }
}
内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
### 回答1: 7-1哈密顿回路是指一条经过图中所有顶点恰好一次的回路。在图论中,哈密顿回路是一个经典问题,其求解难度较大。对于一些特殊的图,如完全图和正则图,哈密顿回路的存在性已经得到了证明。但对于一般的图,目前还没有有效的算法可以在多项式时间内求解。 ### 回答2: 7-1 Hamiltonian cycle是指一个无向图中,经过每个点恰好一次的简单路径,称之为Hamiltonian cycle。如果一个无向图有Hamiltonian cycle,那么它就是一个Hamiltonian图。 Hamiltonian cycle问题是研究如何确定一个无向图中是否存在Hamiltonian cycle的问题,寻找这个问题的答案是计算机科学领域的一个重要课题。 目前,还没有发现一个可以解决所有情况的通用算法,这导致了这个问题的很多变种研究,例如,求解Hamiltonian路径和Hamiltonian环的问题,寻找最长、最短的Hamiltonian路径等等。此外,这个问题也引起了很多数学家的研究兴趣,他们试图证明这个问题的正确性。 虽然寻找一个图的Hamiltonian cycle问题是一个非常困难的问题,但已经被证明,当满足一定条件时,这个问题是可以在多项式时间内解决的。这个问题的关键在于如何确定判断是否存在Hamiltonian cycle的特征。 在实际应用中,Hamiltonian cycle问题与路线和规划问题有很大关联。例如,对于一些必须经过所有节点的计算机网络或路线规划问题,Hamiltonian cycle问题可以有效地应用于设计最优的路线方案。 总之,7-1 Hamiltonian cycle问题是一个非常重要的计算机科学问题,虽然该问题没有通用的解决方案,但已经有很多专家致力于解决这个问题,相信在未来,我们会找到更有效、更高效的算法来解决这个问题。 ### 回答3: 哈密顿回路是指一条经过图中每个顶点并且仅经过一次的闭合路径,其名称来源于爱尔兰数学家和物理学家威廉·哈密顿。这个概念是 NP 难问题之一,因此在复杂性理论的研究中受到广泛的关注。 在数学上,我们可以用一个图论的视角来理解哈密顿回路的概念。一个图是由一组顶点和它们之间的边构成的数学对象。如果一个图中存在一条经过所有顶点的路径,则称该图具有哈密顿路径。如果这条路径是闭合的,也就是说路径的最后一个顶点与第一个顶点相连,则称该图具有哈密顿回路。哈密顿回路是所有哈密顿路径的一类特殊情形,因为它可以被看作是一个哈密顿路径的起点和终点相同的特殊图。 从实际应用的角度来看,哈密顿回路的限制条件使其具有很高的计算复杂度。因为必须遍历到每个顶点,而且顶点只能经过一次,因此尝试找到一个图的哈密顿回路相当困难。实际上,对于一些有着特定的性质的图,哈密顿回路的存在问题可以使用一些算法解决。然而,对于大多数图而言,哈密顿回路的问题依然是难以解决的 NP 难问题。这种限制性质使得哈密顿回路成为了复杂性理论的重要研究领域之一。 总之,哈密顿回路是图论中的一个经典深度问题,其限制性质使得在实际应用中非常困难。然而,在理论研究中,在寻找哈密顿回路问题上的努力有助于对计算复杂度的理解和解决 NP 难问题提供新的视角和新的方法。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值