交叉验证是机器学习中一种常用的评估模型性能的方法。它通过将数据集划分为训练集和测试集,并多次重复这个过程,从而获得对模型性能的更可靠估计。在Scikit-learn中,我们可以使用cross_val_score
函数来实现交叉验证。本文将介绍如何使用Scikit-learn进行交叉验证,并给出相应的源代码。
首先,我们需要导入所需的库和数据集。在这个例子中,我们将使用Iris数据集作为示例。
from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeClassifier