使用Scikit-learn实现交叉验证

146 篇文章 26 订阅 ¥59.90 ¥99.00
本文介绍了如何使用Scikit-learn进行交叉验证,以评估模型性能。通过将数据集划分为训练集和测试集,多次重复此过程,获取模型性能的可靠估计。以Iris数据集为例,选择了决策树分类器,使用Scikit-learn函数执行5折交叉验证,计算平均得分和标准差,展示了交叉验证在模型选择和参数调优中的应用。
摘要由CSDN通过智能技术生成

交叉验证是机器学习中一种常用的评估模型性能的方法。它通过将数据集划分为训练集和测试集,并多次重复这个过程,从而获得对模型性能的更可靠估计。在Scikit-learn中,我们可以使用cross_val_score函数来实现交叉验证。本文将介绍如何使用Scikit-learn进行交叉验证,并给出相应的源代码。

首先,我们需要导入所需的库和数据集。在这个例子中,我们将使用Iris数据集作为示例。

from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeClassifier

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值