信息熵
基础
- x i x_i xi的自信息: 反映特征的某个值,具有非负、单调减、可加和不确定性。表示收到某消息获得的信息量(即,收到某消息后获得关于某事件发生的信息量),公式如下:
I ( x i ) = f [ p ( x i ) ] = − l o g r p ( x i ) , r = 2 I(x_i)=f[p(x_i)]=-log_rp(x_i),r=2 I(xi)=f[p(xi)]=−logrp(xi),r=2 - 条件的自信息量:
I ( x i / y i ) = − l o g r p ( x i / y i ) , r = 2 I(x_i/y_i)=-log_rp(x_i/y_i),r=2 I(xi/yi)=−logrp(xi/yi),r=2 - 联合自信息量:
I ( x i y i ) = − l o g r p ( x i y i ) I(x_iy_i)=-log_rp(x_iy_i) I(xiyi)=−logrp(xiyi)
I ( x i y i ) = − l o g r p ( x i y i ) = − l o g r p ( x i ) p ( y i ∣ x i ) = I ( x i ) + I ( y i ∣ x i ) I(x_iy_i)=-log_rp(x_iy_i)=-log_rp(x_i)p(y_i|x_i)=I(x_i)+I(y_i|x_i) I(xiyi)=−logrp(xiyi)=−logrp(xi)p(yi∣xi)=I(xi)+I(yi∣xi)
I ( x i y i ) = − l o g r p ( y i ) p ( x i ∣ y i ) = I ( y i ) + I ( x i ∣ y i ) I(x_iy_i)=-log_rp(y_i)p(x_i|y_i)=I(y_i)+I(x_i|y_i) I(xiyi