机器学习常见面试问题

本文涵盖了机器学习面试中常见的问题,包括生成模型与判别模型的区别、评价指标如AUC、Precision、Recall等、损失函数的种类、感知机模型、KNN算法的要素及其影响、HOG特征提取、朴素贝叶斯算法推导、决策树相关概念及学习过程,还包括SVM、逻辑回归、Adaboost和KMeans的细节与应用。
摘要由CSDN通过智能技术生成

1、生成模型和判别模型是什么?各有什么优缺点?

2、机器学习常见的评价指标有哪些? 机器学习常见评价指标:AUC、Precision、Recall、F-measure、Accuracy(ROC曲线的含义——横轴FPR,纵轴TPR)?

3、常用的损失函数有哪几种,有什么优缺点?

4、阐述下感知机模型(模型、策略、算法三方面)

5、请说明下KNN算法,KNN由哪三个基本要素决定以及K值的取值过大或者过小会有什么影响?

6、介绍HOG特征提取算法
在这里插入图片描述在这里插入图片描述

7、朴素贝叶斯算法的推导过程(特征独立、公式写全)

8、决策树学习包括三个步骤(特征选择(经验熵与经验条件熵之差)、决策树生成和决策树修剪)

9、决策树是什么?

10、决策树与条件概率分布的关系?(决策树表示给定特征条件下类的条件概率分布,这一条件概率分布定义在特征空间的一个划分上,将特征空间划分成互不相交的单元或者区域,并在每个单元定义一个类的概率分布就构成了一个条件概率分布,决策树的一条路径对应于划分中的一个单元。决策树所表示的条件概率分布由各个单元给定条件下类的条件概率分布组成)

11、 决策树模型是条件概率模型,决策树损失函数是正则化的极大似然函数(损失函数后面

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值